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FOREWARD

The successful completion of a state-of-the-art survey such as the

one reported herein is dependent on the cooperation of a number of

individuals. Professor R. B. Williamson, University of California,

Berkeley was especially helpful as was Professor S. P. Shah, University

of Illinois at Chicago Circle. The assistance of those in industry

such as M. E. Irons of Fibersteel Corporation and D. A. Seymour, Naval

Architect is also appreciated. Professor W. J. Venuti, California

State University, San Jose helped develop the laboratory test criteria

and supervised the testing of all samples.

The work in the Blume office was conducted under the general super-

vision of Roland L. Sharpe, Principal-in-charge, and James E. Boyd,

Project Manager. Henry J. Larsenr Jr.-was the principal investigator

responsible for compilation, review and evaluation of the data as

well as planning and conduct of the laboratory testing program.
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I. INTRODUCTION

This report presents the results of an investigation into the struc-

tural suitability and cost effectiveness of ferro-cement for large

subsonic wind tunnel structures. It was conducted in accordance with

change Item No. 7, dated January 20, 1972, of contract NAS2-5889,

dated March 31, 1970. This investigation was carried out in the

following four main categories: (1) A state-of-the-art survey into

the uses, properties, and costs of ferro-cement; (2) An evaluation

of those ferro-cement properties critical to construction of large,

subsonic wind tunnels, which have not been adequately established to

date; (3) A laboratory testing program to determine preliminary values

for those properties; and (4) A study to establish cost factors for

ferro-cement as related to a preliminary construction scheme for a

nacelle and shroud unit of the type and configuration presented in

the March 22, 1971, John A. Blume & Associates, Engineers report,

"Conceptual Design Study of Power Section for a Proposed V/STOL Wind

Tunnel." These cost data were then used to revise and update the cost

estimate in that report pertaining to the use of ferro-cement.

During the course of this investigation published data on ferro-cement

research were reviewed and evaluated and recognized experts in ferro-

cement research, construction, and economics were consulted. These

consultants included university faculty members and government

personnel involved in basic research in ferro-cement and also private

firms currently engaged in commercial design and construction of ferro-

cement marine craft and other structures. Ferro-cement specimens for

the laboratory testing program were fabricated at a commercial marine

construction yard specializing in ferro-cement boat construction. The

specimens were tested at a university testing laboratory experienced

in static and fatigue testing of construction materials.

8
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The most significant findings reported herein, relative to wind tunnel

construction, are the following:

1. Ferro-cement is a relatively new construction material that con-

sists basically of a thin-shell of Portland cement mortar heavily

reinforced with light gage steel wire mesh. Significant improve-

ment in both cracking strength of mortar and the extent of cracking

result from wide dispersal of reinforcement in the cross section.

Ferro-cement capacity to resist all types of loads except compres-

sion is dependent on the volume and surface area of the reinforce-

ment.

2. Surface smoothness and overall durability of ferro-cement is high

although protective coatings may be required in corrosive environ-

ments. Resistance to impact loads is relatively low. Repair of

damaged areas, however, is relatively simple.

3. Estimates based on the properties of dense concrete indicate that

the acoustical attenuation properties of a ferro-cement shell are

superior to an equivalent steel shell for certain sound frequency

ranges.

4. A limited ferro-cement testing program yielded the following results

based on the samples tested: (a) Resistance to fatigue loading

near the level of cracking stress is high; (b) Resistance to surface

abrasion from high velocity air flow is high; and (c) Natural

vibration frequencies can be predicted from basic material properties

of ferro-cement.

5. In terms of structural and economic feasibility, ferro-cement is

most applicable to wind tunnel structures in areas of curved, thin-

shell construction with relatively low design loading.

- 2 -
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6. For many structures where ferro-cement strength properties are

consistent with design requirements, significant cost advantages

can be expected relative to structural steel. Maximum economy can

be obtained by reducing the large labor costs typical of ferro-

cement construction through use of automated production methods.

7. There is a limited amount of ferro-cement test data available at

present, relative to other building materials such as steel or

concrete. Large-scale structural applications should, therefore,

be based on specific test programs to establish an optimum design.

Principal areas for further work include more comprehensive fatigue

testing, reinforcement and mix design studies, durability studies,

and full-scale load testing.

1.

- 3-
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II. THE NATURE OF FERRO-CEMENT

The ferro-cement concept is as old as that of reinforced concrete, but

its use as a structural material has received widespread attention only

in the last several decades. Ferro-cement is given a brief description

and then the history of its development and current and proposed appli-

cations are summarized in the following text.

A. GENERAL PROPERTIES

Ferro-cement basically consists of a thin-shell of Portland cement

mortar heavily reinforced with steel wire. The reinforcement generally

consists of several layers of light gage steel wire mesh. Typical

shell thicknesses are from 3/8 inch to 1-1/2 inches. Sometimes steel

reinforcing bars are sandwiched between the layers of wire mesh.

Figure 1 shows two common types of ferro-cement reinforcing. Section

la of Figure 1 shows a network of steel reinforcing bars overlain with

layers of wire mesh that is impregnated with mortar. The use of rein-

forcing bars with wire mesh adds to the strength of the material and

also provides a means of establishing the structural shape. Section lb

of Figure 1 is reinforced only with wire mesh and the required shape is

obtained through external means such as casting molds. Because of the

close spacing of reinforcement evident in Figure 1, care has to be

taken in placement of mortar.

The material constituents of ferro-cement and those of more commonly

recognized reinforced concrete are very similar, although the propor-

tions of the materials used in ferro-cement give it several different

and unique properties. The behavior of ferro-cement during strain and

cracking demonstrates a synergistic effect. Because the steel reinforcing

4i
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is very evenly dispersed through the cross section, formation of cracks

in the mortar is inhibited and the stress level at the onset of tensile

cracking is significantly increased over plain mortar and ordinary re-

inforced concrete. The surface area of reinforcement is the parameter

most-closely related to the strain and cracking behavior of ferro-cement.

Compared to ordinary reinforced concrete, ferro-cement exhibits a

uniquely high surface area of reinforcement relative to its total volume.

This is one of the characteristics that differentiate ferro-cement from

reinforced concrete.

Much research in the last ten years has been done on a material closely

related to ferro-cement, commonly referred to as "fiber reinforced

concrete." This material consists of a Portland cement concrete or mor-

tar reinforced with short, small-diameter wires. A typical wire size is

1 inch long by 0.02 inch in diameter. Chief advantages of fiber rein-

forced concrete are good dispersal of reinforcement and cost reductions

resulting from the fact that the short fibers can be mixed and placed

with the concrete or mortar matrix, using the same equipment. Because

of the short fiber length, however, the principle mode of failure for

this material is bond failure and wire pull-out. This type of failure

is quite sudden and is undesirable in concrete structures. To date the

primary applications of fiber reinforced concrete have been experimental

concrete highway and airport runway slabs ranging in thickness from 4 to

6 inches. It has also been used for some thin shells. Relative to

ferro-cement, however, the current state-of-the-art in fiber reinforced

concrete does not warrant consideration at this time for use in the

construction of wind tunnel shells. A bibliography of references on

fiber reinforced concrete work, most of which were reviewed during this

study, is included in Chapter IX.

B. HISTORY

The development of ferro-cement as a structural material has centered

around its applications for the construction of marine-craft. One of

-13
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the first uses of ferro-cement and of reinforced concrete of any type

was the construction of several small boats in France by Lambot in

1855.1 But the modern development of ferro-cement began in the early

1940's with the Italian engineer Pier Luigi Nervi. He designed and

built a number of sailboat and motorboat hulls, as well as some

architectural structures, using thin-shell ferro-cement construction.

His investigations into the properties of ferro-cement can be summarized

in the following statement:

The fundamental idea behind this new reinforced
concrete material ferro-cement is the well known
elementary fact that concrete can stand large
strains in the neighborhood of the reinforcement
and that the magnitude of stress depends on the
distribution and subdivision of the reinforcement
throughout the mass of concrete.2

Since the 1940's the majority of ferro-cement construction has been

amateur-built, "backyard" boats ranging up to 60 feet in length. Poor

results from some of these early projects caused ferro-cement to fall

into some disrepute as a legitimate structural engineering material.

Within the last decade, however, its potential has been recognized by

a number of serious commercial boatbuilders as well as public and

private research institutions around the world. Commercially built

fleets of sailboats, power vessels, and cargo barges now exist or are

planned in the United States, Canada, the United Kingdom, Australia,

New Zealand, the Soviet Union, and China. Basic research on the

engineering properties of ferro-cement has been carried out in most

of these countries. A large amount of the research work done to date

has been valuable in determining the engineering properties of the

material; more work is now in progress, and more is needed to establish

ferro-cement as a viable engineering material for general structural

use. In Chapter III of this report the current state of knowledge of

ferro-cement is summarized and areas requiring additional research are

pointed out.

.14
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C. USES OF FERRO-CEMENT

As stated in the preceding section, the primary focus in ferro-cement

development and construction has been in marine craft hulls. The

material is especially suited to this type of construction because it

can be molded or formed into virtually any shape in a monolithic unit.

It also has relatively high rigidity, relatively high compressive and

flexural strength and resistance to cracking, and is low in material

cost relative to other boat-building materials. Also, it is highly

resistant to fire and most corrosive elements and is easily repairable.

Marine craft that have been built of ferro-cement include private

sailing and motor yachts from 30 feet to 60 feet in length, as well

as commercial fishing and cargo vessels up to 180 feet long. The

Naval Civil Engineering Laboratory at Port Hueneme, California, has

studied ferro-cement for prefabricated construction panels.3 The

Canadian government is currently sponsoring basic research and proto-

type construction of ferro-cement cargo barges.4 The United States

Navy Naval Ship Research and Development Center is presently engaged

in research and prototype construction of 24-foot, high-speed motor

launches with ferro-cement hulls as thin as 3/8 inch.5 Ferro-cement

has also been used extensively for the construction of marina floats.

Pier Luigi Nervi also pioneered the use of ferro-cement for buildings

and other civil engineering structures. He used ferro-cement in

applications such as walls for small buildings and precast units for

stadium roofs. Ferro-cement has more recently been used for lining

mine shafts and tunnels in Eastern Europe and for-decorative paneling

in Australia.6 Its use has been proposed for many types of tanks,

including liquid natural gas containers.7

Architectural and civil engineering applications of ferro-cement have

not kept pace with marine applications since Nervi's first use of the

'7 -
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material. There appear, however, to be definite cost advantages to

ferro-cement in certain kinds of applications. It is a material that

can be engineered to a high degree of precision, yet can be constructed

by semi-skilled or unskilled labor, using relatively inexpensive

materials. As more is learned about the engineering properties of

ferro-cement, these advantages should lead to wider usage for many

types of civil engineering structures as well as marine structures.

A major ferro-cement study is currently being sponsored by the National

Academy of Science.8 The purpose of this study is to establish the

engineering properties of ferro-cement sufficiently well that its

low material costs and labor-intensive fabrication can be utilized

by developing countries for applications such as marine craft and grain

storage structures.

-16
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III. THE STATE-OF-THE-ART
IN FERRO-CEMENT

The state-of-the-art pertaining to important ferro-cement characteris-

tics including current information on the engineering properties of

the material and the various techniques by which ferro-cement structures

are being fabricated is presented in this chapter.

Most ferro-cement work to date has been related to marine construction.

Applications in other fields will undoubtedly give rise to questions

about its material properties and fabrication methods. Recommendations

are made where the necessity for additional work on material properties

or fabrication techniques is indicated, especially in relation to its

use for wind tunnel construction. These recommendations are summarized

in Chapter VIII of this report.

The important material properties of ferro-cement cover a wide range

of engineering design parameters. The following discussions are

based on review and analysis of current ferro-cement research and

construction practice as well as consultation with individuals active

in these fields. Building codes or standardized design procedures

have not been established for ferro-cement. The following sections,

therefore, present quantitative information as well as insight into

the characteristics and behavior of ferro-cement so that appropriate,

economical design methods can be developed for specific structural

applications.

A. STRENGTH PROPERTIES

The behavior and capacity of ferro-cement subjected to various kinds

of static load as well as fatigue and impact loads are discussed in

the following sections.

JOHN A. 9-LUME ASSOCIATES, ENGINEERSJOHN A. BLUME &e ASSOCIATES, ENGINEERS



1. Compressive Strength

Ferro-cement compressive strength is primarily dependent on the

compressive strength of the mortar matrix. Typical ultimate values

are 5,000 to 10,000 psi at 28 days. Based on work at the

Massachusetts Institute of Technology in 1969, J. F. Collins and

J. S. Claman9 reported that the inclusion of wire mesh reinforcement

does not significantly increase or decrease the ultimate mortar com-

pressive strength. Based on the requirements of the American Concrete

Institute Building Code (ACI 318-63) Requirements for Working Stress

Design of Concrete, ferro-cement working stresses should be limited

to 25 percent of ultimate in uniaxial compression and 45 percent of

ultimate in flexural compression.

2. Tensile Strength

The behavior of ferro-cement in tension represents a significant

departure from that of ordinary reinforced concrete. As a result

of the high degree of dispersion of reinforcement, the first tension

cracks in the mortar matrix form at stress levels significantly higher

than for unreinforced mortar or ordinary reinforced concrete. In

addition, crack spacing is generally close and crack width is small.

The dispersal of small diameter reinforcement in the mortar results

in a material that exhibits a relatively homogeneous behavior during

strain and cracking.

The two most significant points of interest in the tensile behavior of

ferro-cement are the stress at formation of the first crack in the mortar

and the ultimate strength. Figure 2 shows the load-elongation relation-

ship for a typical tensile test reported in 1970 by S. P. Shah of the

Department of Materials Engineering, University of Illinois at Chicago

Circle.7 The material undergoes elastic elongation prior to first cracking,

which is a distinct point in the material behavior. After first cracking,

the behavior is quasi-elastic with a reduced modulus.

18
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The formation of a tensile crack through the ferro-cement cross

section is the result of an accumulation of micro-cracks in the

material, which begin forming at low load levels and increase in

numbers as the load is increased. The presence of micro-cracks is

typical of cementitious materials. In ferro-cement, however, the

wide dispersion of reinforcement throughout the mortar matrix restricts

the propogation of these micro-cracks to the vicinity of an individual

wire. The formation of the first observable crack indicated in

Figure 2 is the point where the micro-crack width becomes large

enough that a crack propogates through the entire section.

As tensile stress is increased following the first crack, additional

cracks occur. Both formation and widening of cracks are related to

localized bond failure in the vicinity of the micro-cracks, but the

wide dispersion of reinforcement restricts the extent of bond failure.

This results in a larger number of cracks of small individual width.

The stages of loading and cracking of ferro-cement have been reported

in more detail based on recent work in Poland by J. R. Walkus and

T. G. Kowalski.6 The behavior of ferro-cement in tension (and

similarly in flexure) is summarized in Figure 3 and in the following

statement from their work:

In the initial stage the material behaves in a linearly-
elastic manner when loaded. Elastic deformations occur
at this stage in both metal [wire mesh reinforcement] and
crystalline grids [hydrated cement crystals] as well as
in colloids [unhydrated materials].

With a further increase in stress, ferro-cement becomes
quasi-elastic. The relatively small plastic strains of
the colloids are restrained by the elastic deformation of
the metal wires...The micro-cracks are invisible to the
naked eye and are difficult to observe even when optical
instruments are used. When the load is released, even
optical instruments will not enable the positions where
the micro-cracks have occurred to be detected -- such
is the extent of their closing-up.
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These two stages -- the linearly-elastic and the quasi-
elastic -- constitute the practical elastic working
range of ferro-cement. A further increase in stress
caused very definite plastic deformation of the colloids
as well as crystalline grids, which is in turn resisted
by the metallic grids of the reinforcement. This is the
time of the formation and widening of exploitational
cracks [i.e., cracks caused by loading]...

After the 50-micron limit has been reached the process
of crack widening continues at a uniform rate. Coopera-
tion between concrete and steel continues up to the
attainment of a crack width of 100 microns and thereafter
the steel alone carries all the tensile forces.6

The Technological State shown in Figure 3b refers to the dependence of

ferro-cement corrosion resistance on crack width. This is discussed

further in the section on corrosion resistance.

The first crack strength of ferro-cement in tension has been found to

be related to volume percentage of reinforcement and surface area of

reinforcement. The most significant of these two parameters has been

found to be surface area of reinforcement.6,7,10' 11 The most commonly

used measure of this quantity is specific surface of reinforcement

(Sp), which is defined as the surface area of the reinforcement (in

direction of load) divided by the total volume of ferro-cement. For

the same volume of wire reinforcement, a large number of small

diameter wires has a high value of specific surface while a small

number of large diameter wires has a lower specific surface value.

Figure 4, from experimental studies by S. P. Shah,7 shows an increase

in the tensile cracking stress of the ferro-cement related to an

increase in the steel content. Figure 5a, also from Shah's work,

shows a strong relationship between stress at first crack and specific

surface of reinforcement. The tests represented in Figure 5a show

first cracking stress is increased by a factor of about three over

unreinforced mortar for high values of specific surface. This result

demonstrates a synergistic effect in ferro-cement wherein the presence

-'12 -
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of wire mesh improves the tensile cracking behavior of the mortar

matrix. Figure 5b shows a relationship between decreased crack

spacing (hence decreased crack size) and increased specific surface

of reinforcement.

Although the first cracking strength of ferro-cement is improved by

the use of wire reinforcement, the first cracking strength is usually

well below the ultimate capacity. For many structural applications

of ferro-cement, the presence of cracks of a limited size may not be

detrimental. Shah has proposed a ferro-cement design procedure based

on a maximum specified allowable crack width under service loads.1 2

For example, allowable crack widths would be quite low for structures

that must be watertight or resistant to corrosive elements, and

relatively higher for structures in a less harsh environment. Shah

is currently conducting studies to establish a relationship between

crack width, specific surface of reinforcement, and reinforcing steel

stress for ferro-cement in tension. A hypothetical set of design

curves based on this kind of research is shown in Figure 6. Specifi-

cation of the maximum allowable crack width and selection of a value

of a specific surface would give an allowable design stress.

No direct relationship has been found between the tensile cracking

behavior of ferro-cement and the properties of the mortar matrix.

During ferro-cement testing at MIT in 1969, however, J. F. Collins13

observed that poor bonding between mortar and steel mesh leads to a

lower tensile cracking strength. Poor bond in the wires perpendicular

to the direction of stress creates the equivalent of a void in the

region of the wire. This leads to stress concentrations and premature

cracks perpendicular to the direction of stress. Based on this

finding, care should be taken in mix design and preparation of rein-

forcement to insure proper bond.

The ultimate tensile strength of ferro-cement has been found by Shah7

to be dependent solely on the tensile capacity of the reinforcement.

This is clearly demonstrated by the test results shown in Figure 7.

- 13 -
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3. Flexural Strength

Ferro-cement in bending exhibits unique properties much like those

discussed for tension. A relationship between increasing stress at

first crack and increased volume and specific surface of reinforcement

has been observed, and at ultimate flexural capacity its strength is

related primarily to the capacity of the reinforcement.

Typical load-deflection curves from flexural tests conducted in 1970

by J. E. Tancreto and H. H. Haynes of the Naval Civil Engineering

Laboratory, Port Hueneme, California,14 are shown in Figure 8.

Similar to tension, flexure behavior exhibits an initial linear de-

flection followed by cracking of the mortar and further linear

deflection prior to yield and ultimate failure. The observations of

Walkus and Kowalski6 which are summarized in Figure 3, also apply to

the flexural behavior of ferro-cement. Based on their findings the

elastic behavior is limited by the formation of the first loading

crack. The first visible crack observed by Tancreto and Haynes

(Figure 8), however, is probably at a higher stress level than the

elastic limit proposed by Walkus and Kowalski.

Figure 9, which contains data obtained by Tancreto and Haynes, shows

a relationship between increased specific surface of reinforcement

and increased flexural stress at first crack. The formation of

flexural tension cracks results from the same behavior as discussed

for pure tension cracks. These cracks reduce the flexural rigidity

of the cross section. Its effect is observed as a reduction in the

modulus of elasticity for a flexural load test. This behavior is

verified in work done at MIT15 and the University of Michigan.16

The concept of a design procedure based on crack width as related

to stress and specific surface being studied by S. P. Shah 12 can

also be applied to ferro-cement in flexure. A design criterion

-- 14 
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based on maximum allowable crack width under service loads for a given

structural application would then permit selection of an optimum re-

inforcement configuration and corresponding allowable design stress.

The current work by Shah is being done for pure tensile stress only.

Additional work would be required to establish design curves of this

type for ferro-cement in flexure.

An experimental method for studying concrete is currently being used

at the University of California at Berkeley whereby very thin sections

are cut from specimens after loading and studied microscopically.8

Such a method could be used to observe the formation and width of cracks

and also the elastic and inelastic deformation behavior of mortar and

reinforcement.

Unlike its behavior at cracking load, the behavior of ferro-cement at

ultimate flexural capacity demonstrates a primary dependence only on

the ultimate load carrying capacity of the steel reinforcement. This

result corresponds to similar findings mentioned above for the tensile

strength of ferro-cement. Tancreto and Haynes14 have found that the

ultimate flexural capacity of ferro-cement can be predicted quite

accurately by computing the capacity of a cross section consisting

only of the reinforcing steel using the following equation:

Mult fult c)

where

Mu = Ultimate flexural moment, in.-lb.

ful = Ultimate tensile strength of wire reinforcement, psi

I = Moment of inertia of wires about neutral axis, in.4

c = Distance from neutral axis to extreme tension wire, in.

- 15 -
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The use of steel reinforcing bars in addition to wire mesh (Figure 1),

which increases the volume percentage of reinforcement, gives higher

reinforcement capacity and hence higher ferro-cement ultimate moment.

4. Shear Strength

There is a limited amount of shear strength data available with respect

to design of ferro-cement for shear loads. Available data indicate

that shear strength is dependent on the volume of reinforcement for

shear loading normal to the plane of the material.

Results of some of the earliest ferro-cement research work, done in

1959 in Ireland by L. D. G. Collen and R. W. Kirwin,17 given in

Figure 10, show increased shear strength is related to increased

steel content. These results are substantiated by Claman's1 5 observa-

tion that the inclusion of reinforcing bars in the cross section,

which generally increases steel content, results in increased shear

capacity.

In his work at MIT, Claman1 5 observed that the yielding of ferro-cement

in shear under loading normal to the plane of the material is accom-

panied by slippage of the reinforcement and abrupt change in the slope

of the load-deflection curve. This kind of behavior is undesirable

and should be considered to represent the ultimate shear load of

ferro-cement. To prevent this kind of yielding, design shear stress

should be kept well below this level, similar to the design of rein-

forced concrete members without shear reinforcement. Although design

shear stress will be relatively low, flexural or tensile stresses are

generally more critical for thin-shell structures.

5. Modulus of Elasticity

Studies of the modulus of elasticity of ferro-cement show a relation-

ship between increased volume percentage of reinforcement in the

- 16 -
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direction of loading and increased modulus. A distinct decrease in

modulus after formation of first crack has been observed in most

studies.

The load-elongation curve for a ferro-cement tensile test shown in

Figure 2 shows a decrease in modulus of elasticity after the first

crack. Similar two-phase behavior for flexure tests has been found

by Tancreto and Haynes (Figure 8) but the change in slope is generally

less abrupt. Shah has found that an estimate of the modulus of

elasticity in tension can be obtained from the law of mixture of

composite materials as follows:7

Before first crack: E = E
M

+ ERLV
L

After first crack: E = ERLV L

where

E = Modulus of elasticity of ferro-cement

EM = Modulus of elasticity of mortar

ERL = Modulus of elasticity of mesh in load direction

VL = Volume fraction of reinforcement in load direction

The test results by Shah for modulus of elasticity of ferro-cement in

tension are shown in Figure 11. It can be seen that modulus of elastic-

ity is directly related to volume of reinforcement. This was also

observed in early research in Ireland by Collen.17

The modulus of elasticity of ferro-cement in flexure or compression has

not been studied in detail; however, a dependence on mortar strength and

-17 -
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volume of reinforcement, similar to tension would be expected. The

load-deflection results of Tancreto and Haynes 14 indicate values for

flexure of about 4,000,000 psi before cracking and about 1,000,000 psi

after cracking.

6. Fatigue Resistance

Ferro-cement behavior under repeated loading has been largely ignored

in published research work, although recent unpublished testing work

in the Naval Ships Research and Development Center at Annapolis in-

cluded some fatigue study. It is expected that fatigue resistance of

ferro-cement will be dependent on volume and specific surface of re-

inforcement, similar to the behavior of ferro-cement under tensile and

flexural static loading, and also on the range and magnitude of cyclic

loading.

Some early fatigue test results were obtained in about 1963 by an

English builder of ferro-cement boats, Windboats, Ltd.1 8 Results are

for bending fatigue of four samples 22 inches by 5 inches by 0.65-inch

thick, and are as follows:

More recent work completed in 1971 by the United States Naval Ships

Research and Development Center1 9 is shown in Figure 12. These data

show test results for samples with 6.5 percent reinforcement,

C - 18-
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Nominal Stress
Sample Levels, ps Cycles Remarks

Levels, psi

A +625 2,000,000 cracked
-544

B +700 2,000,000 no fracture
-600

C t1100 100,000 cracked

D t1185 100,000 cracked
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measuring from 3-to 6-inches wide and constant thickness, loaded as

cantilever beams with a 6-inch constant strain zone. Loading range

was from positive maximum load to negative maximum load and the

frequency was from 6 -to 18-cycles per minute. The datum points represent

the point when "fatigue cracks were noted or when the specimen had

accumulated 2,000,000 cycles." The theoretical curve indicated is based

on fatigue data for the wire reinforcement and application of the theory

of transformed sections. Thus it is assumed this curve is based on

fatigue failure as determined by fatigue yielding of the reinforcement.

It is important to note that the loading ranges used were well above

the load to cause first cracking of the mortar. The report concerning

this work concluded that "based on verification of the theoretical curve

by the data it appears that the endurance limit (fatigue yielding) for

this ferro-cement composition is about 3,000 psi." As seen in Figure

12 this endurance limit is for a maximum of 2-million loading cycles.

Static flexural tests reported in this same document indicate that the

static stress to produce reinforcement yielding is about 6,200 psi.

Thus the fatigue limit of 3,000 psi appears to represent about 50

percent of the static yield stress.

The above test results provide important and useful fatigue information.

For design of important or unusual structures, however, much additional

information is needed. For example, data on higher frequency loading,

various loading ranges, and higher number of load cycles would be

significant. A study of the long term effect of strength gain in

cementitious materials on fatigue behavior of ferro-cement would also

be significant. Whereas the Naval Ships Research and Development Center

data (Figure 12) give useful information in the range of ferro-cement

yield load, additional work is necessary to determine the effect of

fatigue on the first crack load. This information would be important

for structures where cracking is to be avoided. In addition, the

previously described work by Shah in establishing crack width as a

design parameter could be adapted to fatigue loading. Design curves

would relate crack width to stress level, specific surface, and also

number of fatigue loading cycles.

- 19 -
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In the testing program described in this report, supervised by John A.

Blume & Associates, Engineers, fatigue tests related to first crack

load were carried out. These tests and results are discussed in

Chapter IV.

7. Impact Resistance

The behavior of ferro-cement under impact loading is typified by high

ductility and energy absorption in the plastic range, good localization

of damage, and generally easy repair of damaged areas. Experimental

testing has been done to compare impact resistance of ferro-cement with

that of reinforced concrete, fiber reinforced plastic, and marine

plywood. Material parameters affecting impact resistance have been

found to be thickness of cross section, volume and surface area of

reinforcement, and strength of reinforcement.

Impact studies in the Soviet Union reported in 1968 by V. F. Bezukladovl l

compared ferro-cement to reinforced concrete. Tests involved dropping

a 10-inch sphere weighing 55 pounds on 20-by 36-inch panels of 1-inch

thick ferro-cement and 2-inch thick reinforced concrete. Results

indicated that the ferro-cement performed slightly better.

Tests conducted in 1970 at MIT by S. P. Shah and W. H. Key, Jr.2 0

evaluated the effect of specific surface of reinforcement and strength

and ductility of reinforcement on impact resistance. Tests involved

striking 9-inch by 9-inch by 1/2-inch thick panels with a ballistic

pendulum and measuring absorbed energy and damage to the panel. Damage

was evaluated by measuring the leakage flow rate of water under a

constant head through the impacted region. Steel reinforcement percent-

age was held constant while ductility and specific surface were varied.

Typical results are shown in Figure 13. Both high specific surface of

reinforcement and high tensile strength, low ductility steel resulted

in lower leakage rate and thus, by definition lower impact damage for

a constant value of absorbed impact energy.

39
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Comparison with other materials and a method for improving impact re-

sistance were studied in 1971 by K. A. Christensen and R. B. Williamson

at the University of California, Berkeley.2 1 Panels of ferro-cement,

marine plywood, and fiber reinforced plastic (FRP) ranging in thickness

from 1/2- to 1-1/2-inches were tested under impacts from a 25-pound

hemispherical weight dropped from heights up to 18 feet. Damage was

measured by the leakage flow rate of water through the damaged area.

The primary focus of the tests was on establishing a single-blow

"critical impact" for each type of panel that resulted in a leakage

rate of 6 gallons per hour under a 2-foot head, which was defined as

a "critical condition" of impact damage. Test results comparing ferro-

cement to marine plywood of equal thicknesses showed that ferro-

cement impact resistance varies from 50 percent less than the plywood

for thin (1/2-inch) sections to approximately equal to the plywood for

thicker (1-1/2-inch) sections. Results showed the FRP to be far

superior, the 1/2-inch FRP section having 100 percent more impact

resistance than the 1-1/2-inch ferro-cement section.

The test results by Christensen and Williamson showed that ferro-

cement, similar to fiber reinforced plastic, exhibits good plastic

absorption of impact energy after partial failure. A typical impact

specimen was described as follows:

The top surface of the impacted ferro-cement specimens
gave little evidence that the panel was in a critical
condition. A smooth crater in the mortar without exposure
of the mesh did not indicate that passage of water might
result. Damage to the impacted surface was confined to
crushing directly under the impact device. On the side
opposite the impacted surface crack propagation was
arrested within a small area, approximately three times
the diameter of the impacting device. This was accom-
panied by approximately 1/2 inch bulging with virtually
no loss, spalling, or breaking away of the mortar, even
though there was cracking and loosening of the mortar
in the mesh. The mesh restrained and retained the
broken mortar.2 1

41
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A sandwich panel designed to improve impact resistance was developed

as part of their ferro-cement impact studies. This new section consists

of ferro-cement overlaid with fiber reinforced plastic. A 3/4-inch

sandwich panel consists typically of 1/2-inch of ferro-cement overlain

with 1/4-inch of FRP. Test results showed impact resistance increased

eight to ten times compared to equal thicknesses of normal ferro-

cement. The materials and fabrication of these sandwich panels would

be more costly than plain ferro-cement, yet this material provides a

good alternative in critical impact areas of ferro-cement structures.

Christensen and Williamson note that no theoretical consideration of

ferro-cement impact resistance exists and none was attempted in their

report. Their work was intented to provide a guide to ferro-cement

impact strength by comparison with the more widely known and documented

materials, marine plywood and fiber reinforced plastic. Relative to

steel, the impact strength of ferro-cement in resisting complete failure

(i.e., punch-through) has been estimated by R. B. Williamson as that of

a steel plate containing the same volume of steel as the total volume

of the ferro-cement reinforcement.8 Although ferro-cement impact

strength is low relative to steel and fiber reinforced plastic, good

ductility of ferro-cement in absorbing impact energy after partial

damage, as well as ease of repair of damaged areas, appear to make

ferro-cement feasible for use in many structures where impact loads

are expected.

Because of the limited impact strength of ferro-cement, tests should

be developed to approximate actual anticipated impact loads, such as

vehicle collision or propeller blade impact. Various ferro-cement

sections should be compared and the need for strengthening such as

FRP overlay or steel plate backing evaluated.

42
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B. MATERIAL CONSTITUENTS

The basic ferro-cement materials -- mortar and reinforcement -- are

discussed in the following sections. The types and proportions of

these materials and their effect on various ferro-cement properties

are described.

1. Mortar

The nature of ferro-cement mortar and the influence of various mix

design parameters on ferro-cement mortar are important considerations.

As in reinforced concrete construction, mix design in ferro-cement

affects a number of material characteristics including compressive

strength, drying shrinkage, density, and durability. The Portland

cement mortars used in most reported ferro-cement construction projects

and laboratory tests can be generally characterized as cement-rich with

relatively low water content and high strength.

The types of cement used in various ferro-cement projects vary widely

depending on the need for such qualities as low shrinkage, high early

strength, or high resistance to corrosion. The use of sulfate-

resistant cement is desirable for increased corrosion resistance as

is low alkali cement for reducing the detrimental effects of alkali-

aggregate reaction. Aggregates are generally fine sand, although some

recent research and construction projects have used manufactured

lightweight aggregates to give better uniformity of aggregate and

reduced structural weight.2 2'4

The proportion of cement in ferro-cement mortars is generally high,

providing good workability and high density. Typical values for sand-

to-cement ratio are from 1.0 to 2.0, although high cement content can

lead to problems in drying shrinkage. Values of water-to-cement ratio

from 0.33 to 0.60 have been used, although a low value is desirable

_43
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for high strength and low permeability. Zero-slump mortar has been

used in conjunction with molds and vibration during placement.

Additives in ferro-cement mortar have been used primarily to improve

such properties as workability and resistance to chemical attack, and

to reduce drying shrinkage. The use of such additives is well-documented

in concrete literature. The most commonly used have been pozzolan or

fly ash to improve workability.

A significant contribution to ferro-cement technology has been the use

of a chromium trixoide additive by K. A. Christensen and R. B.

Williamson, Department of Civil Engineering, University of California,

Berkeley.2 3 Where bare steel reinforcing bars and galvanized wire

mesh are used together, a galvanic cell action is set up between the

steel and zinc mesh coating with the wet mortar acting as the electrolyte,

causing hydrogen gas bubbles to be released. These bubbles seriously

disrupt the surface quality and the bond between the mortar and rein-

forcing bars. The addition of chromium trioxide to the mortar mix

largely inhibits this electrochemical reaction.

A number of ferro-cement characteristics including strength, drying

shrinkage, durability, and economy are greatly affected by mix design.

Until such time as comprehensive design procedures are developed,

detailed study of mortar mix design is recommended for major structural

applications. Because of the typically thin cross section and rein-

forcement coverage typical of ferro-cement, durability is especially

dependent on good mix design. The subject of corrosion resistance is

discussed further in a later section.

2. Reinforcement

The preceding sections covering the state-of-the-art in ferro-cement

strength properties included considerations of reinforcement. For

44
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clarity the various parameters related to ferro-cement reinforcement

are summarized and discussed in this section.

Two commonly used reinforcement configurations are shown in Figure 1.

Section la of Figure 1 shows the use of reinforcing bars in conjunction

with wire mesh. The bars are at the center of the ferro-cement cross

section and the wire mesh is laid over each side of the network of bars.

Reinforcing bars are typically 1/4-inch bars on 2-inch centers while

wire mesh sizes have varied greatly in recent test programs and

construction projects. Typical mesh sizes have 1/2-inch or 1/4-inch

wire spacing and utilize 16-to 24-gage wire.

Section lb of Figure 1 shows a ferro-cement section using only wire

mesh reinforcement. Typical mesh sizes are similar to those mentioned

above. Reinforcement coverage for both sections is typically 1/16-to

1/8-inch. To maximize reinforcement volume and specific surface, the

maximum number of mesh layers generally are used consistent with main-

taining the required coverage within a given thickness.

Reinforcement parameters related to the strength properties and other

performance characteristics of ferro-cement sections include the

following:

* Volume and specific surface of reinforcement

* Size of reinforcement (diameter, spacing)

* Strength and ductility of reinforcement

* Type of reinforcement (reinforcing bars, welded wire mesh,

woven wire mesh, expanded metal, "chicken wire," galvanized,

ungalvanized)

The most significant reinforcement parameters are volume and specific

surface. Increased volume percentage of reinforcement is related

closely to increased tensile stress at first crack (Figure 4) and

JOHN A. BLUME & ASSOCIATES, ENGINEERS



increased tensile stress at ultimate load (Figure 7). The results of

bending tests have related increased volume of steel to increased

ultimate flexural capacity.1 4 Volume percentage of reinforcement

directly affects the elastic modulus of ferro-cement, increased

volume resulting in increased modulus (Figure 11). It appears obvious

that other ferro-cement properties such as fatigue resistance are re-

lated to volume of reinforcement, although this has not been experi-

mentally verified as yet.

The specific surface of reinforcement is the most sensitive material

parameter in relation to strain and cracking behavior. It should be

noted that a high value of specific surface is the principal character-

istic that separates ferro-cement from reinforced concrete. The use

of reinforcing bars in ferro-cement improves some material strength

properties through increases in reinforcement volume, but the only way

of obtaining significantly high specific surface is through the use of

wire mesh reinforcement, or similar materials such as expanded metal

lath, which provide good reinforcement dispersal.

Increased ferro-cement stress at first cracking for both flexure and

tension is very closely related to increased specific surface (Figures

5 and 9). Impact resistance is similarly related to specific surface

(Figure 13). Several ferro-cement research reports have stated that a

high value of specific surface is one of the primary factors that

distinguish it from reinforced concrete. I. R. Walkus and T. G.

Kowalski6 state that a specific surface of reinforcement greater than

about 2.5-inch2 /inch3 delineates ferro-cement from ordinary reinforced

concrete.

The size and spacing of reinforcement are the primary variables in

establishing the value of the specific surface. In general, smaller

diameter wires spaced closer together result in higher specific

surface of reinforcement. The ease of construction is also affected

by size and spacing of reinforcement. The use of more widely spaced

wire mesh allows easier and better mortar penetration.

- 26 -
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Because the ultimate strength of ferro-cement in tension and flexure

is directly related to reinforcement capacity, the strength of rein-

forcement is similarly related to these material properties. A higher

strength (less ductile) steel results in higher load and smaller cracks

at ultimate load. Higher impact resistance (Figure 13) is also related

to higher strength steel.

Several kinds of reinforcement have been successfully used in ferro-

cement construction. The use of steel reinforcing bars along with wire

mesh gives increased flexural stiffness and increased flexural yield.

The inclusion of reinforcing bars also has been observed to improve

shear strength. The most commonly used wire reinforcements are woven

wire mesh and welded wire mesh. Expanded metal lath and chicken wire

have also been used. Comparative studies of various reinforcements

have shown certain weaknesses in some types. Woven wire mesh and ex-

panded metal lath reinforcement result in variation in the ferro-cement

tensile properties in the two orthogonal directions. For woven wire

mesh with large weave angle and also for chicken wire reinforcement,

spalling of the mortar matrix has been observed at the ultimate load

of the reinforcement. It should be noted, however, that the above

materials have been used successfully in marine applications where

service loads are well below ultimate value. The use of expanded

metal lath can, in fact, result in very high values of specific surface.

Ungalvanized wire mesh has been found to provide greater ultimate

strength because the process of galvanizing anneals and weakens wire.

Also, ungalvanized woven wire mesh has been found to be desirable

when tight curvatures or double curvatures are encountered because

there is no bonding between orthogonal wires and it is therefore

easier to form. However, except when protective surface coatings are

used, galvanized reinforcement is generally desirable for increased

corrosion protection because of the relatively thin mortar coverage

over the reinforcement in most ferro-cement sections.
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Optimization of the reinforcement for a specific structural application

is a complicated problem and is related to other factors including

magnitude and type of loads, fabrication methods, service environment,

required service life, strength and stiffness required, and economic

considerations.

Tancreto and Haynes have concluded, based on their studies of the flexural

behavior of ferro-cement with various sizes of woven wire mesh reinforce-

ment, that the best overall compromise for strength, workability, and

cost was a 1/4-inch by 1/4-inch mesh of 23-gage wire. 1 4 However, com-

prehensive data for all types of loading and reinforcement are not yet

available. Therefore, a detailed reinforcement optimization study in

conjunction with a mortar mix design study is recommended for any major

ferro-cement structures.

C. PERFORMANCE CHARACTERISTICS

The following sections contain discussions of various ferro-cement

characteristics which are generally independent of strength properties.

These include surface finish, durability, acoustical and fire resistance

characteristics, repairability, dimensional stability, and maintenance.

1. Surface Characteristics

The surface characteristics obtainable in ferro-cement construction are

similar to those for reinforced concrete or precast concrete construction.

Surface control can be achieved for just about any level of accuracy

through special fabrication methods, such as precision molds. Almost

any degree of surface smoothness can be achieved by treatment of the

molds or by finishing techniques. In addition, mortar additives and

surface coatings can be used to improve smoothness and durability.

Using present mechanical or hand finishing techniques for concrete

floor slabs, surface textures ranging from very rough or skid resistant
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to extremely smooth can be obtained. By using smooth molds and vibration

during placing, surface texture on the contact surface can be made hard

and smooth.

Surface durability is largely dependent on the quality of the mortar.

Reports by the Portland Cement Association2 4 and the American Concrete

Institute2 5 on the wear resistance of Portland cement concrete show that

compressive strength is the most important single factor related to wear.

These studies show a relationship between increased concrete compressive

strength and increased abrasion wear resistance. A similar relationship

was observed for mortar, although abrasion wear resistance of mortar was

found to be less than that of concrete with large aggregate. Wear resis-

tance of concrete and mortar is also enhanced as cement content is

increased and water-to-cement ratio is decreased. Both of these factors

help to make the mortar matrix more dense and favor the wear resistance

of ferro-cement mortars that are characteristically cement-rich and low

in water content.

Surface durability of concrete and also of ferro-cement is dependent

on finishing and curing. Excess surface moisture and rapid loss of

surface moisture must be avoided. These conditions can be met within

the scope of normal concrete technology. Epoxy coatings and marine

paints have been used on ferro-cement boat hulls for added corrosion

protection and surface durability. Coatings of this type could add

significantly to costs, yet their use may be required in certain

applications. The need for surface coatings is further discussed in

the section on corrosion resistance.

Studies conducted in 1970 at MIT by S. A. Frondistou-Yannas and

S. P. Shah2 6 show that the addition of polymer latex additives to

ferro-cement mortar result in higher extensibility and greater toughness.

These results imply that wear resistance could be enhanced by the use of

this type of additive in ferro-cement mortars. However, Frondistou-
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Yannas and Shah show that the addition of polymer latex additives to

ferro-cement mortar result in higher extensibility and greater

toughness. These results imply that wear resistance could be enhanced

by the use of this type of additive in ferro-cement mortars. However,

Frondistou-Yannas and Shah observed that polymer latex additives had the

detrimental effect of causing more shrinkage; thus this area warrants

further study.

Although no data exist on the effects of high-velocity winds, such as

occur in wind tunnel structures, Portland Cement Association studies2 4

of hydraulic abrasion and cavitation show that good quality concrete is

not affected by a steady, tangential, high-velocity flow of water. The

long-term behavior, however, of plain and polymer latex-added or epoxy

coated ferro-cement mortars in wind tunnel environments should be

studied. A preliminary evaluation of the effects of high-velocity air

flow on ferro-cement was conducted in the test program described in this

report. Findings are discussed in Chapter IV.

2. Corrosion Resistance

Factors affecting ferro-cement durability and methods for improving it

are discussed in this section. Factors related to corrosion and

corrosion resistance of ferro-cement can be obtained from sources

within the concrete industry. Information about concrete durability,

concrete protection, and the use of admixtures relative to corrosion

resistance is included in the reports of ACI Committee 201,25 ACI

Committee 515,27 and ACI Committee 212,28 respectively.

Deterioration of reinforced concrete (and ferro-cement) in corrosive

environments generally results from chemical attack on the concrete and

corrosion of the steel reinforcement. The extent of chemical attackon

concrete is mainly related to its permeability, its alkalinity, and

the tendency of hydrated cement compounds to undergo undesirable

chemical reactions such as sulfate reactions. Penetration of fluids
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into concrete can cause adverse chemical reactions with the cement,

aggregate or steel. Corrosion of steel reinforcement in concrete

results primarily from penetration of corrosive agents through cracks

in the concrete covering, and deterioration of the concrete cover. The

degree of protection given reinforcement by the concrete cover is

dependent on the concrete quality and depth of cover.

Susceptibility of ferro-cement to deterioration from corrosive elements

is primarily related to reinforcement cover, which is typically quite

thin (about 1/8 inch) compared to ordinary reinforced concrete, and

therefore provides less protection to the reinforcement. This problem

has generally been treated by the following measures: (a) Increasing

impermeability of'mortar by low water-to-cement ratio, and careful

attention to proper proportioning, grading, mixing, placing, and curing;

(b) Application of impermeable coatings; (c) Added protection to the

reinforcement such as galvanizing; and (d) Proper design to eliminate

or minimize the extent and width of mortar cracks. A qualitative re-

lationship between crack width and corrosion resistance, established

by Walkus and Kowalski,6 is shown in Figure 3. In general, dealing

with the susceptibility to corrosive attack resulting from the thin

ferro-cement section and reinforcement cover requires high quality

materials for the mortar and a high degree of control in mixing and

placing.

The need for protective coatings is based on the specific structural

application. The following two general conditions exist relative to

corrosion resistance for reinforced concrete and ferro-cement:2 5

1. Those in which proper attention to the concrete itself
will provide immunity or an acceptably low rate of
deterioration, and

2. Those in which it is necessary to prevent contact between
the corrosive chemical and -the concrete by means of a
protective coating.

si
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Concrete and mortar specifications that assure resistivity to many

corrosive elements are well within the state-of-the-art in concrete

technology. For important or unusual uses of ferro-cement, however,

especially in view of the thin reinforcement coverage, new specifications

should be developed that include tests to determine adequacy of corrosion

resistance. In case of inadequacy, protective coatings may be desirable.

Experience with ferro-cement in marine construction has shown that

application of impervious coatings is required in most cases.

Protective coatings that have been used in marine ferro-cement con-

struction are primarily resin-based coatings such as polyester,

urethane, and epoxy. Desirable qualities for coatings include low cost,

ease of application, impermeability, chemical resistivity, extensibility,

and toughness. Careful preparation is necessary for applications of

these coatings. A significant problem, especially in amateur-built

ferro-cement boats, has been debonding of protective coatings.

Additives have been used in ferro-cement mortar to obtain greater

density and hence greater corrosion resistance. One commercial boat

building company employing ferro-cement is currently using an acrylic

latex additive with apparent success.2 9 The outside (or gel) coat of

mortar contains the acrylic latex additive while the remainder of the

cross section uses regular mortar. Experiments conducted at MIT2 6

showed that polymer latex additives produce mortar of increased

toughness and extensibility, although increased drying shrinkage

resulted. Based on these findings and the above mentioned use in

boats, the use of a polymer latex added gel-coat appears very promising

for many kinds of ferro-cement construction. The expense of applying a

protective coating could be eliminated as well as the possibility of its

debonding. This area should be carefully considered in future ferro-

cement studies.

Studies of the effect of freeze-thaw cycles on ferro-cement samples

conducted by A. M. Kelly and T. W. Mouat3 0 are shown in Figure 14.
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These tests were conducted in accordance with ASTM C 291-67 (Method of

Test for Resistance of Concrete Specimens to Rapid Freezing in Air and

Thawing in Water) on 3/4-inch ferro-cement specimens of three types

containing one, six, and twelve layers of mesh. The beneficial effect

of adequate reinforcement is evident from these tests. It should be

noted that the test procedure for ASTM C 291 is generally more severe

than freeze-thaw cycles in actual structures.

Ferro-cement corrosion resistance is an important area for future study.

Experience with ferro-cement marine craft shows that resistance to a

corrosive sea water environment can be obtained. However, various forms

of protective coatings are required for this. Because this corrosion

protection adds significantly to costs, the economic feasibility of some

proposed ferro-cement structures can be affected. Comparative studies

of corrosion resistance for various types of ferro-cement, in conjunction

with mortar mix and reinforcement studies are recommended in relation to

specific structural applications.

3. Vibration and Acoustical Characteristics

No test results on vibration and damping of ferro-cement have been

reported at present. It is expected that vibration characteristics

would be approximated by the law of mixture of composite materials

similar to Shah's results for modulus of elasticity. Vibration and

damping have been studied in the test program described in this report

and are discussed in Chapter IV.

Although no tests on the acoustical properties of ferro-cement have

been reported, approximations can be made based on work with concrete.

Figure 15 shows the sound-transmission loss through dense concrete and

steel based on an approximate design method described by I. L. Ver and

C. I. Holmer.3 1 It can be seen that 5/8-inch and 1-inch thick dense

concrete exhibit greater attenuation than 1/8-inch and 3/8-inch steel

plate over some portions of the sound frequency range. These results
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give an approximate comparison between steel and ferro-cement with

regular weight aggregate. However, conditions in an actual wind tunnel

could vary. The acoustical properties of lightweight aggregate ferro-

cement and those of ferro-cement with tensile or flexural cracks would

probably vary from that of dense concrete. Comparative attenuation

tests of various ferro-cement configurations in actual wind tunnel

environments would be especially significant.

4. Fire Resistance

Ferro-cement has high fire resistance because the cement mortar is not com-

bustible and provides insulation for the steel reinforcement. Tests con-

ducted by Windboats, Ltd., of England in 1963 indicate that "test panels

have withstood 17000 C for 1-1/2 hours with no effect on the material."1 8

However, heat does have a certain deleterious effect on cementitious materials

and in addition, the 1/16-to 1/8-inch reinforcement coverage typical of

ferro-cement is well below the minimum coverage required in reinforced con-

crete structures. These factors should be- considered in experimental work

to establish a fire rating for various ferro-cement configurations.

5. Repairability

The lower impact resistance of ferro-cement relative to fiber reinforced

plastic and most metals is offset to a large extent by its ease of

repair. Literature on ferro-cement marine craft contains a number of

accounts of repair of severe impact damage within a few hours at nominal

cost either in port or under way. Procedures for ferro-cement repair

are similar to those for concrete and can be obtained from sources

within the concrete industry such as the American Concrete Institute

Manual of Concrete Practice.3 2 Typical repair materials are Portland

cement mortar, epoxy grout, or commercial patching mixtures. Repair

procedures involve removing damaged or spalled mortar, straightening or

replacing deformed reinforcement, treating broken surfaces with an

etching or bonding agent, and applying new mortar or patching material.
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Repair of ferro-cement adversely affected by corrosion or fire would

be done in a similar manner.

Tests conducted in 1970 by A. M. Greenius and W. N. English3 3 for the

Canadian Department of the Environment evaluated the strength of various

ferro-cement repair materials. One-inch thick ferro-cement panels were

tested to failure under flexural and impact loadings, repaired with one

of several patching materials and then retested to failure. Patching

materials used were Portland cement mortar consisting of one part cement,

two parts sand and 0.4 parts water by weight; a commercial epoxy marine

patching compound; and a commercial epoxy floor patching material.

Test samples repaired with Portland cement mortar were retested after

21 days curing time. Samples that had suffered reinforcement damage

during original failure retested at 50 percent to 70 percent of their

original strength. Other samples retested at about 80 percent of their

original strength.

Test samples repaired with epoxy materials were retested after 7 days

and regained virtually all their original strength. The repair with

epoxy was affected by forcing the patching material into the cracks

produced by initial failure, rather than chipping away damaged material

as in the case of the repairs using Portland cement mortar. On re-

testing, failure occurred away from the epoxy repaired cracks.

6. Dimensional Stability

The primary factors influencing structural dimensions and tolerances

are drying shrinkage and creep. Drying shrinkage can be minimized by

proper mix design and is a relatively short-term phenomenon. When a

structure is cast in segments it can generally be compensated for by

casting the segments slightly oversize. In the case of cast-in-place

ferro-cement used in conjunction with precast concrete ribs, special
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care should be taken to minimize shrinkage which results in internal

stress build-up.

Ferro-cement creep has been studied in testing work reported by the

Naval Ships Research and Development Center.l9 The results are shown

in Figure 16 and are for 1/2-inch ferro-cement specimens containing

6.2 percent galvanized wire mesh and loaded in flexure. The report

of this work showed that from the nature of the log-log plot of the

data that the ferro-cement samples tested have "the creep characteris-

tics of a metal and not those of a composite."1 9 The data shown in

Figure 16 are for a limited time duration. For structures with large

dead loads or operational loads, creep data over a more extended time

period are needed.

As in concrete construction, the use of prestressing in ferro-cement

or in concrete ribs cast integrally with ferro-cement should be care-

fully studied from the point of view of dimensional changes caused by

creep. Creep of prestressed members generally occurs over an extended

period and can cause problems in the areas of joints and connections.

7. Maintenance

Maintenance of ferro-cement is discussed in this section, with reference

to wind tunnel structures. Published data on long-term maintenance

problems encountered in non-marine ferro-cement structures are not

available. Long-term maintenance problems in ferro-cement marine craft

are not well defined because almost all ferro-cement boats currently

operating have been built since the mid-1960's.

The most important maintenance problem in ferro-cement boats is main-

taining adequate protection against chemical (especially sulfate)

attack. The prolonged exposure of ferro-cement boat hulls to sea

water has generally required the use of protective coatings. Most

failures of the coating material or of the hull itself have resulted
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from poor workmanship in obtaining good mortar penetration into the

reinforcement and from poor selection of materials for reinforcement

or coatings. Inadequate mortar penetration or high permeability have

led to excessive deterioration from freeze-thaw cycles or sulfate

attack.

Reinforcement configurations that allow excessive cracking have re-

sulted in rapid sea water penetration and resulting deterioration. Some

epoxy coating materials have been found to be inadequate. Coefficients

of expansion for temperature and moisture change, which are much greater

than that of the ferro-cement mortar, have led to shear failure in the

mortar just under the coating. Debonding of the coating has occurred

in many cases within 1-to 3-years.

Instances of failure and debonding of surface coatings in ferro-cement

boats have been troublesome to repair, but experience has shown that

such coating failures do not damage well-made ferro-cement hulls.2 9

As previously discussed, in the absence of protective coatings the most

important factor in obtaining ferro-cement resistance to chemical

attack is high-quality mortar with low permeability.

Ferro-cement structures in atmospheric environments rather than sea

water should be subjected to a much lower rate of chemical attack.

Many structures -- with high-quality mortar, adequate reinforcement

cover, and good design minimizing deflection and cracking -- can be

used without coatings and be expected to require no maintenance.

Where moderate chemical attack is expected, such as from air pollution

or engine exhaust residues, protective coatings may be required. Based

on recommendations from persons currently engaged in ferro-cement

research and construction,8 ' 2 9 a good solution appears to be the use

of a gel-coat of mortar with a polymer latex additive. This was pre-

viously discussed in the section pertaining to corrosion resistance.
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The use of this gel-coat provides increased density and chemical resis-

tance in the outer layer of the ferro-cement mortar and decreases the

problems of debonding and mortar cracking. Although there are no long-

term test results on the use of this gel-coat, based on the present

state-of-the-art it appears to be the best way of providing a minimum

maintenance ferro-cement structure for wind tunnel construction. Current

and future research on protective coatings may produce improvements in the

use of gel-coats and also other kinds of protective coatings.

Future ferro-cement test programs should include studies to verify the

adequacy of the polymer latex additive gel-coat and studies to compare

the basic properties and the effectiveness of various protective coatings.

For wind tunnel structures subject to seve're vibration loads, the current

fatigue studies should be extended to determine the long-term effect on

surface properties and maintenance problems.

D. CURRENT CONSTRUCTION METHODS

The following section constitutes the second part of the state-of-the-

art study of ferro-cement where current construction methods were

studied which can be applied to wind tunnel structures. The most common

methods have been developed primarily for marine construction. These

methods are adaptable for fabrication of other kinds of structures,

including large wind tunnel structures. Of the commonly used construction

methods, the two principal ones differ basically in the means by which the

shape of the finished structure is formed and controlled. In the first

method, structure shape is defined by a network of steel reinforcing

bars which is overlain with wire mesh (Figure 1). The surface is

controlled by hand placing and troweling of the mortar. The second

method utilizes a mold to achieve the required finished shape and surface.

The use of precisely constructed, reusable molds appears to be especially

compatible with the structural and economic requirements of wind tunnel

construction.
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Ferro-cement construction using frames or networks of reinforcing bars

for shape control is more labor-intensive and achieving close dimensional

tolerance is more difficult. The cross section shown in Section la of

Figure 1 is typical of one-unit, amateur-built private yacht construction

where the cost of a mold for one unit is excessive and where labor time

is not accounted. A large amount of labor is required for fabricating

the reinforcing bar and wire mesh reinforcement network, placing the

mortar to insure proper penetration, and trowel-finishing the mortar to

the required dimensional precision.

The problem of dimensional tolerance can be greatly reduced by the use

of molds. The use of molds also reduces labor in placing and finishing

the mortar and generally requires less skilled workmen. Molds are

currently being used in the construction of a large ferro-cement barge

in Vancouver, British Columbia, and of large sailboat and motorboat

hulls in West Sacramento, California. These two projects warrant

further discussion because they involve several of the latest innovations

in large-scale, commercial ferro-cement construction.

The construction of a 180-foot prototype ferro-cement cargo barge by

FERROCON Industries, Ltd., Vancouver, British Columbia,4 has been

partially sponsored by the government of Canada for the purpose of

developing new Canadian technology. A large amount of research was

conducted in connection with this project and the test data has been

retained as proprietary information by FERROCON Industries. Discussions

with David J. Seymour, Naval Architect,3 4 who had complete design

responsibility for the FERROCON barge project, indicate that some of

the most advanced state-of-the-art procedures in ferro-cement design

and construction were utilized. Precast, post-tensioned concrete ribs

and frames were used in conjunction with cast-in-place ferro-cement

shells for the hull and deck. The vessel was designed to comply with

the standards of the American Bureau of Shipping for ocean-going

barges. As an example of the strict specifications, a minimum modulus

of rupture of 6000 psi was required for the hull and deck. Zero-slump
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mortar and extensive vibration during placement of mortar were used to

help meet this strength requirement. It is expected that most design

requirements for civil engineering uses of ferro-cement will be below

those encountered in this project.

The 55-foot motor and sailboat hulls being produced by Fibersteel

Corporation, West Sacramento,2 9 utilize a concrete cavity mold for the

hull and deck and also a unique process for casting ferro-cement. By

this process, a wet-mix spray gun is used to cover the surface of the

cavity mold with a 1/16-inch gel-coat of ferro-cement mortar containing

an acrylic latex emulsion additive. After this first coat has an

initial set, a first layer of reinforcement is laid onto the mortar and

a coat of ordinary mortar is sprayed on. A second layer of reinforcement

is then placed before the mortar sets and the sequence is continued until

the required thickness is reached. Some advantages of this method are

good surface and dimensional control through the use of molds, excellent

penetration of mortar into reinforcement mesh, hence good bond without

the need for vibration and good adaptability for production line

operations. Compared to the methods developed by FERROCON Industries

this method uses a wetter, thus somewhat weaker, mortar mix and gives

less accurate placement of reinforcement. However, for uses where load

levels are relatively low and ease of construction becomes of primary

importance, it appears that a process similar to this layering method

would result in cost advantages.

A third significant ferro-cement project is currently being carried out

by the Naval Ship Research and Development Center.5 This work involves

research and prototype construction of 24-foot ferro-cement motor

launches. Steel molds and hand application of mortar were used for

construction of three prototypes. Minimum weight was important for

these craft and hulls as thin as 3/8 inch were used. At least one

prototype was successfully field tested for a year in sea conditions

exceeding design requirements.
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in the survey reported by Walkus and Kowalski,6 which is related primarily

to current ferro-cement work in Eastern Europe, some interesting fabrica-

tion techniques are discussed. These techniques have been developed

primarily for prefabricated curved or folded-plate roof elements and are

referred to as "vibro-pressing" and "vibro-bending." They are described

as follows:

Basically, "vibro-pressing" consists of a concrete dispenser
moving on rails and following the profile of the element,
the dispenser vibrating and pressing the mortar into the mesh
fixed below it. "Vibro-bending" usually means that a ferro-
cement sheet is cast flat on a steel mold which then has its
sides raised to form finally a V-shape. The bending is
accomplished through a small angle and to a relatively large
radius so as to create the least disturbance for the parts
already cast. Another variation of this technique consists
of "winding" a ferro-cement sheet on a circular former so as
to produce a trough element. The process may also be
accompanied by mold vibration.6

Material and fabrication costs for the large ferro-cement marine projects

currently under way in the United States and Canada are difficult to

evaluate because most are in preliminary or prototype stages where costs

are not representative of final construction. The feasibility of ferro-

cement for civil engineering structures is expected to depend heavily

on the economy of fabrication. The application of ferro-cement to wind

tunnel construction is discussed in Chapter V. In Chapter VI various

cost factors related to this kind of construction are reviewed.
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IV. FERRO-CEMENT TESTING PROGRAM

The review of published and unpublished data discussed in the preced-

ing chapter indicated that in a number of areas insufficient informa-

tion was available. A limited test program was therefore developed

and conducted to obtain preliminary data about those parameters that

could be important in wind tunnel construction. The ferro-cement

characteristics tested are related to the high speed air flow and

vibratory loading present under operational conditions in most wind

tunnels and include: strength and cracking behavior under fatigue

loading, vibration and damping properties, and resistance of ferro-

cement surfaces to abrasion from high velocity air flow.

Inadequate performance in any of the above material characteristics

could seriously limit the feasibility of ferro-cement for wind tunnel

construction. Therefore, to improve the reliability of the conclu-

sions reached in this report, tests were conducted to obtain prelim-

inary data in these areas. The tests were designed to provide pre-

liminary values of the material properties from which estimates as

to the adequacy or inadequacy of the material could be made. In ad-

dition, some static tests in compression, tension, and flexure were

conducted to provide a correlation between the properties of the test

samples studied in this program and those studied by other investiga-

tors as described in the preceding chapter. The materials and pro-

cedures utilized in testing are described in Section A and the results

are presented and discussed in Section B of this chapter.

A. DESCRIPTION OF TESTS

Criteria for the tests were developed by John A. Blume & Associates,

Engineers. Test specimens were furnished to Dr. William J. Venuti,

Professor of Civil Engineering, California State University, San Jose,
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who conducted the tests. The tests were performed in the Advanced

Structures Laboratory at the University. Appendix C contains a de-

tailed report of the test equipment and experimental methods.

1. Test Samples

Two large ferro-cement panels were fabricated by Fibersteel

Corporation, West Sacramento, using the layering process described

in the preceding chapter. The panels were 3 feet by 5 feet by

1/2-inch thick and were made in accordance with the specifications

listed in Table 1. The panels were cast on 3/4-inch concrete

form plywood and after curing were cut into test samples. Fig-

ures 17a and 17b show the mortar spraying process and a layer of

wire mesh placed into the wet mortar. The casting procedures and

materials are the same as those used by Fibersteel in fabricating

ferro-cement boat hulls, although they normally use expanded metal

instead of wire mesh. Because of the fabrication procedures used

test results should be representative of the properties obtainable

in actual field-fabricated ferro-cement.

The panels were cured under a combination of steam and ambient

temperature conditions. After curing a total of two weeks, pan-

els were cut into test samples using an 8-inch diamond-blade con-

crete saw as shown in Figure 17c. The nominal dimensions of all

test samples are shown in Table 1.

Nominal thickness of a-ll ferro-cement samples was 1/2 inch, al-

though actual thickness varied from about 0.470- to 0.600-inch.

Variations in thickness were measured and the minimum thickness

was assumed to control the load capacity of all test panels.

43 66
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TABLE I

FERRO-CEMENT TEST SAMPLE DATA

MATERIAL SPECIFICATION

· Sand ...............................

· Cement .............................

* Reinforcement ......................

* Additives ..........................

* Sand/cement ratio ..................

* Water/cement ratio .................

PHYSICAL MEASUREMENTS

· Nominal sample sizes (in inches)

mortar cubes ........................
compression tests ...................
tension tests .......................
flexure tests .......................
fatigue tests .......................
vibration tests: (a) ................

(b) ................
(c) ................

air abrasion (affected area) ........

* Volume percentage of reinforcement
(one direction only) ...............

· Specific surface of reinforcement
(one direction only) ...............

Del Monte White Sand, 30-mesh

Kaiser "Permanente", Type 1-2

5 layers 1/2 -inch x 1/2 -inch
x 19-gage welded wire mesh;
67,000 psi yield stress

none

1.0

0.33

2x2 x2
4 x 6 x 1/2
4 x 12 x 1/2
6 x 24 x 1/2
6 x 24 x 1/2
6 x 24 x 1/2
6 x 24 x 1/2
6 x 36 x 1/2
2x2

2.1 percent

2.6 inch2/inch3
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Some warping was observed in the panels and, therefore, a high-

strength Hydrocal mixture was applied at the load and support

regions of all samples. The Hydrocal was formed to ensure that

all load and support points were in parallel planes.

2. Static Load Tests

Samples were tested to obtain static strength properties. These

tests consisted of compression loading of mortar cubes and com-

pression, shear, tension, and flexural loading of ferro-cement

specimens. Material specifications and sizes of all samples are

given in Table 1.

Mortar Cube Tests: Three mortar cubes were cast from the same

batch as the test samples and tested in compression to ultimate

load. Tests were conducted after a curing period of 6 weeks.

Panel Compression Tests: Three ferro-cement samples were loaded

in the plane of the reinforcement and tested to ultimate compres-

sive load.

Shear Tests: Several ferro-cement shear tests were performed.

Analysis of the results indicated, however, that the mode of fail-

ure of the samples was flexure not shear. Therefore, these tests

are not discussed further.

Tension Tests: Six ferro-cement samples were tested in tension

to determine load at first crack and ultimate load. The stressed

zone was 6 inches in length. Strips of conductive paint were ap-

plied to each face near the vertical edge. Leads from the paint

strips were attached to an ohmmeter and the formation of the first

crack in the ferro-cement and paint strip was detected by an in-

crease in resistance. A tension sample in the test machine with

the ohmmeter attached is shown in Figure 18a.

* 4569
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Static Flexure Tests: Four samples were loaded in flexure to de-

termine load-deflection behavior, first crack load, and ultimate

load. Samples were loaded as simple beams with a 21-inch span;

the load was applied through an aluminum channel section at two

points 3.45 inches from the center of the sample. Load and de-

flection were plotted on a continuous chart recorder. Great care

was taken to obtain the maximum degree of accuracy for the load-

deflection records. The methods used are described in Appendix C.

The occurrence of the first crack was detected by the sharp sound

of mortar cracking.

3. Flexural Fatigue Tests

Repeated loading was applied to ten test samples using the same

supports and loading device as the static flexural tests. Load-

ing was varied between a minimum and maximum positive value and

was controlled by a servo-operated hydraulic load cell. All tests

were run for 1,000,000 cycles. Maximum load was constant for each

cycle while deflection was permitted to vary. Load was applied

at 12 cycles per second. Two strips of conductive paint were ap-

plied to the tension side to detect cracking of the ferro-cement.

In addition, static load-deflection measurements were made on

each test sample prior to fatigue testing, after 500,000 and after

1,000,000 cycles to evaluate any variations resulting from the

effects of fatigue. The test frame, load cell, and a fatigue spec-

imen are shown in Figures 18b and 18c. The deflectometer for stat-

ic load-deflection measurements can be seen in Figure 18 c.

4. Flexural Vibration Tests

Tests to determine vibrational characteristics of ferro-cement

samples in flexure were performed on three samples using the same

supports and loading device as the static flexure tests. A spec-

ified load value was applied and then suddenly released, allowing

the beam to undergo free vibration. The displacement time-history
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for each test was obtained from a linear voltage differential

transformer positioned under the sample and permanently recorded

using an oscilloscope and camera. Natural frequencies and dis-

placement amplitudes were obtained from these records. Each sam-

ple was tested at several initial displacements with three repli-

cations for each displacement.

5. Air Abrasion Tests

A stream of high velocity air was directed over the surfaces of

two test samples. The air flow was from a 1/2-inch air supply

line and was adjusted to produce a pressure of 6 psi over a 2-

inch by 2-inch area of the test samples for flow normal to the

sample. The samples were then rotated so the air stream was 45

degrees from normal and the tests were continued for seven days.

The surface affected by one test was on the side of the sample

cast against the plywood form and the surface affected by the

other test was trowel finished.

B. PRESENTATION AND DISCUSSION OF RESULTS

Results of the testing program are presented and the significant find-

ings discussed in this section. These results are an important part

of the following chapter wherein the state-of-the-art study and the

testing program results are examined in evaluating the structural fea-

sibility of ferro-cement for wind tunnel construction.

1. Static Load Tests

The results presented in Table II represent the average of sam-

ples for each type of test. The tension and flexure values for

first cracking compare well with the test results presented in

Figures 5a and 9. Load-deflection plots for two of the flexural

tests are shown in Figures 19 and 20. The behavior recorded here

is similar to that described by Walkus and Kowalski.6 The initial

- 47 7
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TABLE II

SUMMARY OF STATIC TEST RESULTS

Equivalent 6-inch cylinder stress

Based on paint crack

JOHN A. BLUME & ASSOCIATES, ENGINEERS

Number Average Average
of Crack Ultimate

Test Tests Stress, psi Stress, psi

Mortar Cube 3 - 11,900

9,3 0 0 (a)

Compression 3 - 8,950

Tension 6 8 1 5 (b) 1,660

Flexure 4 1,320 5,120

(a)

(b)
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linearly elastic behavior is followed by a region of quasi-

elastic behavior and then by the occurrence of the first load-

Induced crack, which defines the upper limit of the effective

elastic range of the material. The same behavior is expected in

tension, although the tension tests did not include recordings

of load-deflection behavior.

2. Flexural Fatigue Tests

The results of the fatigue tests are given in Table III. The

second and third columns of Table III give the minimum and maxi-

mum ferro-cement stresses at the two extremes of the fatigue load

range. These were held constant for each test. The fourth col-

umn of Table III shows the relationship between maximum stress

for each test and the average cracking stress of 1320 psi obtained

from the static flexure tests.

All tests were run to 1,000,000 cycles. Tests la and lb were run

on the same sample, so this sample was subjected to a total of

2,000,000 cycles at two different maximum stress levels. Tests 1

through 5 were run on samples assumed to be initially uncracked

and no evidence of cracking was obtained from the conductive paint

circuits during the tests. Tests 6 through 10 were loaded to

cracking prior to fatigue testing so the fatigue behavior of a

cracked section could be observed. The measurements of load-de-

flection behavior for each test sample, which were reduced to

modulus of elasticity, were used to evaluate the results of fa-

tigue loading on each sample. These data are given in the last

three columns of Table III.

The measured values of elastic modulus for Tests 1 through 9 show

no significant variation resulting from the fatigue loading. Al-

though there is a slight trend in some tests toward decreased mod-

ulus with Increased fatigue loading cycles, the trend does not

-4976
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TABLE III FATIGUE TEST RESULTS

(a)Loaded to crack load before fatiguing; measured E is for
initial slope-deflection curve (see Figures 19 and 20)

(b)Measurement impossible because of excessive deflection

77
- 50 -
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Test Minimum Maximum Max. Stress Measured E, psi x 106
Stress, Stress, 1320 psi Before At At

psi psi Fatigue 500,000 1,000,000
Testing Cycles Cycles

la 240 680 0.52 5.65 5.65 5.45

lb 240 830 0.63 4.92 5.01 5.01

2 240 830 0.63 7.70 6.85 6.50

3 240 830 0.63 3.40 3.15 3.22

4 240 1010 0.77 3.92 3.86 3.76

5 240 1180 0.90 6.25 6.90 6.60

6 240 1370 1.04 7 .5 2 (a) 3.72 3.79

7 240 1470 1.11 4.7 1 (a) 3.38 3.24

8 240 1910 1.44 5 .6 0(a) 3.22 3.08

9 240 2230 1.70 5.8 7 (a) 3.03 2.70

10 240 3220 2.40 3.30 (a) 1.81 (b)

I ______________________ _... ._ _



appear to be strong. Test 10, however, shows a very significant

deterioration from the fatigue loading. After 1,000,000 cycles

load-deflection measurements could not be made because of exces-

sive deflection. The stress level at which this test was run is

comparable to that of the fatigue tests shown in Figure 12.

Measured values of elastic modulus compare well with previous

measurements for cracked and uncracked sections. It should be

noted that the samples for Tests 3, 4, and 10, assumed to be ini-

tially uncracked, appear to actually have been cracked, based on

the measured values of modulus of elasticity.

These test results give a good indication of the fatigue behavior

of ferro-cement sections of the type used for these tests and for

similar fatigue loading. Tests using different materials and load-

ing conditions will be needed to obtain a comprehensive picture of

ferro-cement fatigue behavior.

3. Flexural Vibration Tests

Three samples were tested at varying initial deflections with

three replications of each test. Results of the vibration tests

are shown in Table IV. Tests were made on both uncracked and

cracked samples. The condition of each sample prior to testing

based on loading history and visual inspection is given in the

second column of Table IV. The sample for the first series of

tests was one that had been used previously for fatigue testing

and was cracked and had experienced 1,000,000 cycles of fatigue

loading at a maximum stress of 1,470 psi. A dead weight was at-

tached at the center of the samples for some tests to prevent the

sample from vibrating off the supports. The magnitude of this

weight is given in the third column of Table IV.
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TABLE IV VIBRATION TEST RESULTS

-J5 A. BLUME & ASSOCIATES, ENGINEERS

Tests Condition Weight Measured Computed Measured Damping Ratio,
W, Frequency, E, 6 percent
lb cps psixlO xn+l xn+3 Xn+7

6
I a cracked;10 50 17.7 -3.55 4.1 3.3 2.7

fatigue
cycles

I b cracked;1 0 50 16.8 3.19 7.1 5.6 4.0
fatigue
cycles

I c cracked;10 100 12.2 3.27 4.9 4.4 3.5
fatigue
cycles

II a uncracked 15.5 30.3 5.17 2.8 2.6 2.2

II b cracked 30' 19.0 3.65 4.3 4.0 3.4

II c cracked 45 15.0 3.32 5.8 4.9 4.2

III a uncracked 0 23.2 5.32 3.6 3.3 3.2

III b uncracked 0 22.6 5.15 3.0 3.1 3.0

III c uncracked 16 12.8 5.35 3.4 3.3 2.8

III d cracked 0 15.7 - 4.5 3.8 3.5



Typical examples of the photographic record of the amplitude time-

history of vibration obtained for each test are shown in Figure 21.

The average of vibration frequencies obtained from these records

is shown in Table IV for each series of tests. From the frequency,

weight, and dimensional properties of the samples, values of dy-

namic modulus of elasticity were computed and are shown in column 5.

These values are comparable to measurements of static modulus of

elasticity obtained from static tests. Average values are 3,400,000

psi and 5,250,000 psi for cracked and uncracked sections, respec-

tively.

Initial irregularities in the amplitude of vibration were observed

in most tests and can be seen in Figure 21. This appears to be

the result of the samples leaving the supports because of vibra-

tion. Measurements of frequency and amplitude were made only in

the portions of the records that exhibited a regular pattern of

vibration.

Amplitude measurements were used to estimate the internal damping

of the ferro-cement specimens. Values of damping, X, in terms of

percentage of critical damping were computed from the following

equation:

100 / Un
n+m 2i In un

where

un = amplitude of nth cycle

un+m = amplitude of (n+m)th cycle

-53 80
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The nth cycle was chosen as the first cycle after irregular vibra-

tion ceased and was generally the 5th or 6th cycle. Values of

damping were computed for 1 cycle, 3 cycles, and 7 cycles after

the nth cycle and are given in Table IV. A difference in damping

for cracked and uncracked sections is clearly seen from these

results. Average values are 4.3 percent for cracked sections and

3.0 percent for uncracked sections. There appears to be a trend

in the computed damping values toward decreased damping for the

decreased amplitudes recorded in the 3rd and 7th cycles from the

reference cycle. This trend is more pronounced for cracked sec-

tions than uncracked and Indicates the possibility of a relation-

ship between internal damping and amplitude of vibration.

4. Air Abrasion Tests

Qualitative evaluation of the surface of the two ferro-cement

test samples indicated that no observable deterioration occurred

during the tests. Observations were made visually and by touch

and compared the tested surface area with untested surface area

on the same test samples. These tests appeared severe based on

observation of the tests in progress, but the results are not un-

usual in view of the high strength of the ferro-cement mortar

used in the testing program.
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V. FERRO-CEMENT FOR
WIND TUNNEL CONSTRUCTION

The findings of Chapters III and IV were used to evaluate the possible

use of ferro-cement for wind tunnel construction. The results of the

state-of-the-art survey and the preliminary test program, which to-

gether provide a detailed picture of ferro-cement material properties

and uses, were evaluated in terms of general applicability to wind

tunnel construction. Based on the results of this evaluation, the per-

formance requirements for a specific wind tunnel structure where the

use of ferro-cement is proposed are presented. As ferro-cement material

properties are generally compatible with these structural requirements,

a scheme is outlined for the fabrication and erection of ferro-cement

portions of this structure.

A. EVALUATION OF FERRO-CEMENT CHARACTERISTICS

The use of a material in a wind tunnel structure or in any-kind of

structure is primarily determined by whether the material can be

economically designed to meet the requirements of the structure. In

the following, the loading capacity of ferro-cement, as well as other

material characteristics, is evaluated with respect to wind tunnel

structures. General criteria for design of ferro-cement structures --

based on the state-of-the-art survey, testing program, and this eval-

uation -- are summarized in Appendix A. A detailed discussion of fac-

tors related to economy is contained in Chapter VI.

Proposed values of ferro-cement static design stresses are summarized

in Table V. These values are based on the test results described in

Chapter IV for 1/2-inch thick samples containing 5 layers of 1/2-inch

by 1/2-inch by 19-gage welded wire mesh, which were fabricated using
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TABLE V

PROPOSED FERRO-CEMENT DESIGN STRESSES

(Based on 1/2-inch thick samples with 5 layers of 1/2-inch by 1/2-inch

by 19-gage welded wire mesh)

= Ultimate mortar compression strength

= Uniaxial tensile stress to produce first mortar crack

(c) ft2 = Flexural stress to produce first mortar crack

Type Criteria for Design Design Stress Based
Against Cracking Test Data For

No Cracking

Uniaxial
Compression 0.25 2300 psi

c

Uniaxial
Tension 0.75 ftl (b) 600 psi

Flexural
Compression 0.45 f' 4200 psi

c

Flexural
Tension 0.75 ft2 1000 psi

Shear ..l FT 100 psi)

(a) f'
C

(b) ftl
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the layering process described In Chapter ill. The design stresses in

Table V are for an application where cracking is to be avoided. Thus

the criteria for uniaxial and flexural tension are based on a reduction

of the measured stresses at cracking. The remaining criteria are

based on the recommendations of the ACI Building Code (ACI 318-63) for

working stress design of concrete.

To meet the requirements of the latest ACI Building Code (ACI 318-71),

which recognizes only ultimate strength design for reinforced concrete

members, methods for estimating ferro-cement ultimate strength such

as those proposed by Tancreto and Haynes1 4 for flexure could be used.

Based on the first crack stresses reported in Chapter IV, it appears

that a criterion based on limited cracking will generally govern the

design.

The load capacities of a 5/8-inch and 1-1/8-inch ferro-cement shell,

based on the design stresses in Table V, are given in Table VI. The

capacities are also compared to that of an unstiffened 1/4-inch struc-

tural steel plate. It can be seen that relative tension and shear

capacities are very low. Yet.compression and flexural strength ap-

proach that of the steel plate of approximately equal weight. Also,

flexural stiffness that is measured by the product of modulus of elas-

ticity and moment of inertia (EI) is many times greater for the ferro-

cement shells.

Based on comparisons given in Table VI, use of ferro-cement would be

expected to result in lower tensile capacity compared to unstiffened

steel of approximately equal weight. The low tensile and shear capac-

ities may make ferro-cement use unfeasible for some structures; this

can be partially offset by the use of reinforced concrete ribs.

The load-carrying capacity of ferro-cement is of first importance in

most structural applications, yet other material characteristics can

also affect its feasibility. Surface smoothness and durability obtain-

able in ferro-cement construction are generally compatible with wind tunnel
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TABLE VI

COMPARATIVE FERRO-CEMENT AND STEEL LOAD CAPACITIES

Based on test data

Lightweight ferro-cement mortar assumed

Ferro-cement elastic modulus = 5.0 x 10 psi
6

Steel elastic modulus = 29 x 10 psi

JOHN A. BLUME & ASSOCIATES. ENGINEERS

Ferro-cement(a) in Steel
Uncracked Condition

Description (based on Table V)

5/8-inch 1-1/8-inch 1/4-inch
Shell Shell Shell

Weight(b), psf 5.7 10.3 10.2

Compression, 1440 2590 5000 (@ 20 ksi)
lb/in.

Tension, lb/in. 375 675 5500 (@ 22 ksi)

Shear, lb/in. 63 113 3620 (@ 14.5 ksi)

Flexure, in.-lb/in. 65 210 250 (@ 24 ksi)

EI(c), in.-lb/in. 102,000 594,000 38,000

(a)

(b)

(c)



requirements, although special surface treatment may be necessary in

especially corrosive environments. Corrosion accelerated by mortar

cracks is generally aggravated by the typically thin reinforcement

cover. However, data relating cracking and crack width to design

stresses and corrosion resistance, and also the use of protective

coatings, provide methods for dealing with cracking.

The relatively high internal damping of ferro-cement together with its

high flexural stiffness indicates that vibration problems should gen-

erally be minimized. Estimates of sound attenuation properties indi-

cate that ferro-cement may be superior to a structurally equivalent

steel plate over some portions of the sound frequency range. Within

the range of available test data, fatigue strength of ferro-cement

should not limit its use in most wind tunnel structures. Impact

strength is relatively low, but there are a number of methods for im-

proving it.

it should be possible to use ferro-cement in any structure where the

foregoing strength and performance characteristics are compatible with

the specific structural requirements. But the most advantageous use

of the material appears to be in curved, thin-shell structures, which

are difficult to form in other materials and that reduce ferro-cement

stresses through a shape factor resulting from the curvature. The

thinness of ferro-cement shells, however, accentuates the need for ex-

cellent workmanship and control in fabrication, particularly in main-

taining the thin reinforcement cover and designing and placing the

mortar so to minimize voids.

The overall feasibility of the use of ferro-cement must be based on

its strength and performance characteristics as well as its relative

cost for a specific structure. As noted previously, because of the

labor intensive nature of ferro-cement construction, its economy is

closely related to the development and use of automated or semi-auto-

mated production methods.
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This is discussed in more detail in the cost study in Chapter VI.

Performance requirements for a specific wind tunnel structure are out-

lined in the following paragraphs. A preliminary construction scheme

is also presented based on these requirements, the evaluation for wind

tunnel construction, and the preliminary design criteria in Appendix A.

B. TYPICAL PERFORMANCE REQUIREMENTS

The state-of-the-art survey, testing program, and structural evalua-

tion of ferro-cement described in this report are directed toward the

general applicability of ferro-cement to wind tunnel structures. The

following discussion of performance requirements is based primarily on

a specific Drive (or Power) Section for a large-scale subsonic wind

tunnel such as that described in the March 22, 1971, John A. Blume &

Associates, Engineers report "Conceptual Design Study of Power Section

for a Proposed V/STOL Wind Tunnel." The ferro-cement portions of this

structure are the shrouds and nacelles that require aerodynamic sur-

faces and are shown in Figures 22 and 23. The requirements outlined

below are based on discussions with NASA Ames Research Center personnel

as well as civil engineering practice as applied to typical large struc-

tures of this type.

Loading Capacity: Shrouds and nacelles must withstand all normal struc-

tural loads (dead, live, wind, seismic). Shrouds must resist a positive

(inward acting) pressure of 90 psf at maximum wind tunnel speed. Struc-

tural materials must be capable of resisting the effects of vibration

such as that caused by fan motor vibration or fan blade-induced pressure

pulsing.

Structure Durability: All portions of the structure must retain their

structural effectiveness over the required service life with normal

maintenance.
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Surface Quality: Standard of reference for smoothness of aerodynamic

surfaces is rolled steel plate. Surface finish should cause no more

resistance to flow of air than rolled steel plate and must be capable

of maintaining required surface smoothness under effects of maximum

air speed. Air flowing in the tunnel normally contains no unusual

substances except products of aircraft engine exhaust.

Dimensional Tolerance: Tolerances for

and nacelle dimensions are as follows:

a. Offsets:

· within 20 feet of fan:

· 20 feet to 40 feet from fan:

* greater than 40 feet from fan:

b. Deviation from "true" curve:

· within 20 feet of fan:

* greater than 20 feet from fan:

deviations from nominal shroud

none

< 3/32 inch

< 1/2 inch

< 3/32 inch from "true"
surface;

0.2 degree maximum angle
of departure from "true"
line and surface

not critical

Sound Attenuation: Standard of reference for acoustical output is

existing 40-foot by 80-foot wind tunnel at Ames Research Center.

C. A PRELIMINARY CONSTRUCTION SCHEME

A scheme for fabrication and erection of ferro-cement shrouds and

nacelles for the Drive Section shown in Figures 22 and 23 was developed

and is described in the following paragraphs.

The construction scheme is based on the criteria presented in Appendix

A and should meet the performance requirements outlined in the pre-

ceding text. In developing this scheme, materials or construction

methods beyond the scope of the current ferro-cement state-of-the-art
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or normal practices in reinforced concrete construction have been

avoided. For the proposed structural usage, a ferro-cement design

using readily available materials and proven construction methods is

consistent with the feasibility and cost studies contained in this

report.

The structural and functional suitability of ferro-cement in the pro-

posed Drive Section is based primarily on minimization of construc-

tion costs because load levels for this structure are relatively low.

Thus, simplicity of fabrication is a significant design consideration.

The previously described ferro-cement barge prototype being built in

Vancouver by FERROCON Industries utilizes ferro-cement shells with

yield strength in excess of 6,000 psi. However, this required hand

placement of steel and mortar, hand vibration, and finishing using

highly skilled workmen. For a project such as the wind tunnel shrouds

and nacelles adequate strength could be achieved through a more auto-

mated, less costly fabrication process, similar to the layering process

discussed in Chapter III.

Figure 24 is a partial isometric view of the Drive Section structure

in Figures 22 and 23 and shows the relationship between the structural

steel support framing and a ferro-cement shroud. The construction

scheme consists basically of precasting the ferro-cement shroud (or

nacelle) in segments and erecting and connecting the segments to a

structural steel framework to form the finished structure. The cross-

hatched portion of the ferro-cement shroud represents one precast seg-

ment. The completed shroud is constructed of many of these precast

segments that are fabricated at ground level in reusable molds, then

lifted and permanently fastened in place. The nacelles are constructed

using the same procedure.

An isometric drawing of a nacelle mold is shown in Figure 25. The

mold is the same length as the actual nacelle, but the width represents

one-quarter of the nacelle circumference. Thus the mold is reused four
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times in casting the segments for one complete nacelle. The high re-

use of molds for the entire structure is important to good economy in

precast construction. The required dimensional control for the com-

pleted shroud or nacelle can be obtained by careful construction of

the molds and using the surface in contact with the mold for the

finished aerodynamic surface. Proper mortar mix design and curing

procedures, consistent with the use of precasting, would be required.

The precast shroud and nacelle segments are lifted from the ground,

positioned by cranes and connected together and to the supporting

frame in a manner such as shown in Figure 26. Bolted connections are

made to the structural steel framing. Shims can be placed between the

shroud segment and steel framing ring to adjust the shroud dimensions

to the required tolerances. Joints between segments are sealed with

epoxy grout.

Figure 27 shows a typical precast shroud segment in isometric view.

The segment is 20 feet long and spans between the structural steel sup-

port frames which are 20 feet apart. The segment is attached at its

ends to a circumferencial steel ring that is part of the support framing.

The precast shroud segment shown in Figure 27 is designed to carry the

design loads over a span of 20 feet in the manner of a flat plate. The

shell thickness and size and spacing of longitudinal ribs are chosen

to minimize the weight of the segment. Although not shown, a precast

nacelle would be formed and supported in a similar fashion.

Design studies based on reinforced concrete practice and the state-of-

the-art in ferro-cement, as well as the 'independent feasibility review

presented in Appendix B, indicate that this construction scheme could

be accomplished without major difficulties. Considerable additional

design and testing work would, however, be necessary prior to initiating

a project of this magnitude. Recommendations for additional ferro-

cement research and development related to large-scale ferro-cement

structures have been discussed in previous chapters of this report and

are summarized in Chapter IX.
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VI. COST STUDY OF FERRO-CEMENT
FOR WIND TUNNEL CONSTRUCTION

Cost factors related to ferro-cement construction are discussed in this

chapter. A comparison is made between relative costs for manual fabrica-

tion and more mechanized fabrication of a 55-foot boat hull. Using the

preliminary construction scheme discussed in Chapter V, a cost estimate

for the Drive Section shown in Figures 22 and 23 is developed. The unit

costs used in this estimate are based on the recommendations of a con-

sultant experienced in design and construction of a large ferro-cement

marine project (Appendix B) and discussions with fabricators such as

Fibersteel Corporation.

The cost factors important to ferro-cement construction include: cost

of basic materials (sand, cement, additives, and'reinforcement); cost

of labor in producing the ferro-cement; cost of erection where in-place

fabrication is not used; cost of special equipment such as precasting

molds; and cost of special development and testing. Most construction

methods now being used are very labor-intensive and sources of cost

information concur that labor is the most significant cost factor in

producing ferro-cement.

Because of this large labor factor, the use of labor-saving equipment

and procedures are necessary for economical ferro-cement construction

on a commercial basis. An example of the effect of mechanization comes

from the boat-building industry. Based on an estimate from Jack R.

Whitener,3 5 a typical amateur-built 55-foot sailboat involves $1,000

for materials and 1,800 to 2,000 man-hours for construction of the

basic hull. This kind of construction involves manual layup of the

steel reinforcing bar network and wire mesh followed by manual applica-

tion and finishing of mortar. Compared to this are the techniques
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used by Fibersteel Corporation that were discussed in Chapter III.

Using a complete hull mold and a mortar spray gun with the layering

process, this firm quotes a similar material cost, but only 100 man-

hours of labor for completion of the basic hull.2 6 The costs involved

in this method would include amortization of the mold and special

equipment, yet the labor savings result in substantial overall cost

reduction.

As previously discussed ferro-cement construction for structures such

as the Drive Section shrouds and nacelles shown in Figures 22 and 23

will be evaluated primarily in terms of fabrication costs because

design loads are relatively low. Maximum usage of automated methods

must therefore be made to minimize the labor costs of fabrication.

Because of the large amount of repetition in this structure, an obvious

labor-saving technique is precasting. In conjunction with the use of

precasting molds, automated methods for forming reinforcement, placing,

compacting and finishing mortar, and curing should lead to greater

economy. Further development of automated methods, if necessary, should

be within the scope of a project of the magnitude of the proposed wind

tunnel.

Additional cost factors related to the use of ferro-cement for wind

tunnel construction include research and development to establish and

verify optimal ferro-cement parameters for the proposed usage, cost of

production facilities such as molds, placing and curing equipment, and

erection of precast ferro-cement segments. Most of the factors related

to erection are within the present state-of-the-art in precast and pre-

stressed concrete construction.

A detailed cost estimate was prepared for the Drive Section in Figures

22 and 23 based on recommendations made by David J. Seymour, Naval

Architect, which are included in Appendix B. These recommendations

were based on detailed, specialized knowledge (much of it proprietary)

gained by Mr. Seymour in conjunction with a research and prototype-
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construction project for development of ferro-cement for large sea-

going cargo barges.4 '3 4 Mr. Seymour's responsibilities relative to

this work included complete design, production of working drawings

for the prototype barge, and construction planning.

The estimated unit costs for the Drive Section shown in Figures 22 and

23, listed in Table VII are based on those presented in Appendix B.

TABLE VII

ESTIMATED FERRO-CEMENT UNIT COSTS FOR

WIND TUNNEL DRIVE SECTION

Unit Cost/Item
Square Foot

1. Research, development,
design & engineering $0.17

2. Molds 0.24

3. Fabrication 4.50

4. Assembly 0.67

5. Contingencies 15% 0.83

TOTAL $6.41

The principal item subject to variation in this summary is Item 3, the

cost of materials and labor in fabricating ferro-cement segments.

Lower costs would be expected for structures with lower operational

loads and dimensional tolerance requirements. Further development of

automated fabrication methods and equipment would be expected to

further reduce this figure. Fabrication and assembly of ferro-cement

for flat surfaces would also be expected to have lower unit costs than

given in Table VII. It should be noted, however, that other building

materials, such as rolled-steel plate, would likewise be less expensive

for flat areas. t00
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The costs shown in Table VII are based on ferro-cement shrouds and

nacelles that are completely supported by structural steel framing

spaced on 20-foot centers. It is possible that design optimization

for load-carrying capacity of both steel framing and ferro-cement

could lead to some reduction of overall construction costs. This would

require optimization of such factors as ferro-cement shell thickness,

concrete rib spacing and prestressing, and structural steel framing

size and spacing.

The ferro-cement unit cost in Table VII has been used to revise the

cost of Concept III (Ferro-cement) contained in Table A of John A.

Blume & Associates, Engineers report "Conceptual Design Study of

Power Section for Proposed V/STOL Wind Tunnel," dated March 22, 1971.

That report contains a comparison of four cost estimates for a Power

(Drive) Section with shrouds and nacelles of structural steel, pre-

cast concrete, ferro-cement, and reinforced plastic. The updated

cost estimate for the ferro-cement concept is included in Appendix D

of this report.

101
- 67 -

JOHN A. BLUME & ASSOCIATES, ENGINEERS



VII. SUMMARY OF FINDINGS

The principal findings of the state-of-the-art study, testing program,

and cost study are summarized below.

A. STATE-OF-THE-ART STUDY

1. Ferro-cement is a relatively new structural material that consists

of a thin-shell of Portland cement mortar reinforced with large

amounts of steel wire. Its unique material properties, which

mainly result from a large bond surface area between the steel

and mortar (specific surface of reinforcement), include increased

tensile stress at formation of tension cracks and improved

cracking behavior relative to unreinforced mortar and reinforced

concrete.

2. Ferro-cement as a structural material can be engineered to a rel-

atively high degree of precision, yet utilizes low cost materials

and can be adapted to relatively low cost production methods. In

this regard it has been successfully used for several decades in

construction of marine craft.

3. Ultimate compressive strength of ferro-cement is determined

primarily by the strength of the mortar matrix. Typical ferro-

cement mortars utilize a high quality fine aggregate with high

cement and low water content, and have high ultimate strength.

4. Under tensile and flexural loading, increased stress at formation

of the first mortar cracks and decreased crack width are directly

related to increased specific surface of reinforcement. The

stress range preceding formation of first crack is defined as the

effective elastic range of the material. Ultimate ferro-cement
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capacity is directly related to reinforcement capacity for tension

and flexure.

5. Ferro-cement shear capacity is relatively low; the use of re-

inforcing bars appears to increase shear strength.

6. Modulus of elasticity is related to volume of reinforcement and de-

creases after formation of cracks.

7. Based on fabrication and finishing methods for reinforced concrete,

a wide range of surface textures is achievable. Wear resistance

of ferro-cement surfaces is primarily related to mortar strength,

finishing, and curing methods.

8. Corrosion resistance of uncoated ferro-cement shells is determined

by quality and permeability of mortar, thickness of reinforcement

cover, presence of cracks, and crack width. Quality and density

of mortar and cracking behavior favor corrosion resistance, but

thin ferro-cement reinforcement cover is generally detrimental.

Use of a polymer latex additive gel-coat appears to be an ideal

way of improving corrosion resistance.

9. Based on approximate design methods, 5/8-inch and l-inch ferro-

cement (approximated by dense concrete) can be expected to give

greater acoustical attenuation than 1/8-and 3/8-inch steel plate,

respectively, for some portions of the sound-frequency range.

10. Yielding of ferro-cement under repeated flexural loading is

related to the fatigue behavior of the steel reinforcement.

11. Resistance of ferro-cement to fire is relatively high.

12. Impact resistance of ferro-cement increases with increased

specific surface and tensile strength of reinforcement.
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Comparatively speaking, impact resistance of equal thicknesses

of marine plywood and ferro-cement are approximately the same,

while impact resistance of fiber reinforced plastic is greatly

superior to ferro-cement. Impact resistance of ferro-cement

can be increased significantly with an overlay of fiber reinforced

plastic. Relatively low ferro-cement impact resistance is

partially offset by the ease of repair of damaged areas.

13. Currently used ferro-cement fabrication techniques consist of

(a) manual construction of reinforcement network combined with

manual lay-up and finishing of mortar, and (b) various automated

procedures such as spray application of mortar, layering build-up

of mortar and mesh, mechanized dispensing of mortar and vibration,

all which are related to the use of molds.

B. TEST PROGRAM

1. The results of static compression, tension, and flexural tests

of ferro-cement laboratory samples compared well with results

for similar samples by other investigators.

2. Based on results of static tests, the static design load capacity

of a 1-1/8-inch ferro-cement section is estimated to be comparable

in compression and flexure to a 1/4-inch unstiffened structural

steel plate of approximately equal weight. Flexural rigidity of

the ferro-cement section is estimated to be much greater than

that of the steel section.

3. The formation of the first crack in ferro-cement test samples

during flexural fatigue loading (to a maximum of 1,000,000 cycles)

was found to be difficult to determine. Fatigue loading was in

one direction only; four test samples were uncracked and seven

were cracked prior to fatigue testing. Measurements of load-

deflection behavior were made periodically during fatigue loading
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of test samples. Evaluation of the effects of fatigue loading

to a maximum stress of from 52 percent to 170 percent of estimated

cracking stress, based on the 'load-deflection measurements,

indicates no significant fatigue deterioration of the samples

occurred within the range of the tests.

4. Flexural vibration records of ferro-cement samples indicated

variation in the internal damping ratio for the cracked and un-

cracked conditions (average values of 4.3 percent and 3.0 percent,

respectively). Computed values of dynamic modulus of elasticity

based on observed frequencies of free vibration indicate a

similar variation, The average values for cracked sections and

uncracked sections were 3,400,000 psi and 5,250,000 psi,

respectively. These values compare very well with measurements

of modulus of elasticity obtained from static tests.

5. Qualitative evaluation of air abrasion tests, wherein two test

samples were subjected to high velocity air flow which exerted

a pressure of 6 psi over a 4-square-inch area for a period of

seven days indicates that the surfaces of the samples were not

affected by the test.

C. COST STUDY

1. There are no completed ferro-cement structures similar to a

large-scale, subsonic wind tunnel Drive Section from which to

directly obtain cost data.

2. The most significant cost factor related to ferro-cement

construction is the labor involved in manufacturing the ferro-

cement. This is the area where most cost reductions can be made

through the use of automated fabrication methods.
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3. Based on discussions and evaluation by consultants experienced

in design and fabrication of ferro-cement marine construction,

unit costs for ferro-cement Drive Section shrouds and nacelles

of the type described herein are estimated at $6.41 per square

foot for a 5/8-inch thick ribbed shell supported by structural

steel framing.
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VIII. CONCLUSIONS AND
RECOMMENDATIONS

A number of conclusions were reached as a result of the study and

evaluation described in this report relative to the general structural

use of ferro-cement and more specifically to its use for wind tunnel

construction. The need for additional research studies into some

ferro-cement material properties was also recognized and a number of

recommendations were made. These conclusions and recommendations

are listed in the following sections.

A. CONCLUSIONS

The principal conclusions relative to the use of ferro-cement for

wind tunnels are the following:

1. The current state-of-the-art favors the applicability of ferro-

cement to some parts of wind tunnel construction. However,

further experimental studies are needed to bring the state-of-

the-art up to the standards of other structural materials,

such as steel and reinforced concrete.

2. Because some ferro-cement strength properties are low relative

to other wind tunnel construction materials, such as structural

steel, it cannot be used in all types of structures. However,

in many structures where ferro-cement load capacity is compatible

with structure design loads, significant cost advantages can be

expected over structural steel.

3. For many applications, ferro-cement structures can be expected

to require very little or no regular maintenance. But, because

of the thinness of the sections and the thin steel coverage,
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high quality materials and workmanship will be required for good

strength properties and durability.

4. Relative to structural steel, ferro-cement can be used most

advantageously in thin-shell construction having single or

compound curvature because the curvature will result in increased

rigidity and decreased stresses. Ferro-cement also can be formed

in curved shapes with relatively little cost increase over flat

surfaces, while rolled steel plate production is much more ex-

pensive, especially in compound curvature.

5. Present ferro-cement construction is labor intensive, thus economi-

cal production on a large-scale basis is dependent on labor-saving

automated fabrication methods. The use of molds for precasting,

and automated mortar placing and curing procedures are advantageous

for structures with a large degree of repetition.

B. RECOMMENDATIONS

The results from the state-of-the-art study of ferro-cement material

properties, construction methods, and a preliminary testing program

show that ferro-cement appears to be quite feasible for some types of

wind tunnel construction. However, the need for further investigation

into some physical properties of ferro-cement and ferro-cement

structures is indicated. The recommendations for further ferro-cement

studies discussed in Chapters III through VI with special reference to

wind tunnel construction are summarized below.

Design and construction of some ferro-cement structures can be based

on the current state of knowledge, as have many marine craft and some

civil engineering structures. However, for important or unusual new

structures, such as wind tunnels, appropriate studies from additional

tests outlined below are recommended.
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1. Fatigue Testing: Additional fatigue tests to better relate

cracking behavior and crack width to fatigue loading. Parameters

such as number of cycles, frequency and amplitude of loading,

volume and specific surface of reinforcement and load range should

be studied.

2. Full-scale Mock-up Tests: Load testing of full-scale or large-

scale structural elements, such as precast shroud and nacelle

segments for a subsonic wind tunnel Drive Section. Load testing

of sub-assemblies such as joints, connections, and seals.

3. Reinforcement Study: Determine optimum reinforcement for given

structural applications as a function of size, strength, spacing,

specific surface and economy. Evaluate behavior of mortar-

reinforcement matrix during cracking, yielding and failure.

4. Mix Design Study: Detailed study for optimizing mortar mix

design. Determine the effect of type of cement and aggregates,

mix proportions, and curing methods on ferro-cement parameters

such as compressive strength, durability, shrinkage and economy.

5. Durability: Evaluate significance of various material param-

eters for improving durability of ferro-cement in wind tunnel

environments. Determine necessity of protective coatings for

various applications. Evaluate economy of different forms of

corrosion protection.

6. Acoustical Attenuation: Evaluate the effects on acoustical ab-

sorption and sound transmission-loss of variables such as

ferro-cement density, structural details, and cracking. Study

methods for improving acoustical characteristics.

7. Fire Resistance: Establish fire rating for ferro-cement.
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8. Impact Resistance: Develop tests to simulate anticipated impact

loads on specific structures. Evaluate the adequacy of the ferro-

cement sections designed for these structures, and study methods

for improving impact strength, where required.
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APPENDIX A

PRELIMINARY CRITERIA FOR DESIGN OF FERRO-CEMENT SHELLS

The following preliminary criteria for design of ferro-cement structures

are based on an evaluation of a state-of-the-art survey, current design

and construction practices, and the results of a limited testing pro-

gram. These criteria are specifically related to wind tunnel

structures such as the proposed large-scale, subsonic wind tunnel

Drive Section. More extensive testing as discussed in Chapter IX

of this report will be required to establish final criteria for structural

use of ferro-cement.

A. Loads

1. Vertical Loads:

a. Dead load of ferro-cement shell and ribs.

b. Floor live load (Uniform Building Code, 1970 Edition,
Table No. 23-A).

c. Roof live load (Uniform Building Code, 1970 Edition,
Table No. 23-B) -- 20 psf basic.

2. Lateral Loads:

a. External wind loads in accordance with UBC (Section 2308).

b. Seismic loads should be in accordance with the appropriate
spectral acceleration curves corresponding to the maximum
probable earthquake that should be determined for the site.
The dynamic response of ferro-cement structures to seismic
motion should be considered in final design. This state-
of-the-art procedure is now used in the design of major
facilities throughout the United States such as nuclear
power plants and large office buildings. It provides a
better picture of the response of structures and equipment
to possible earthquake motions and hence enables the
engineer to more efficiently design the facilities to
resist seismic motions. Structural elements should be
designed with increased allowable stresses for resisting
the maximum seismic loading. It is recommended that a
detailed study be made to develop final seismic design
criteria before construction designs are initiated.
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3. Operational loads as required for specific structure. A

typical operational pressure diagram based on recommendations

of NASA Ames Research Center personnel for a large-scale, sub-

sonic wind tunnel is shown in Figure A-1.

B. Design Standards

1. Mortar: Mix design considerations shall be based on current

state-of-the-art for ferro-cement and applicable specifications

of the ACI Code (ACI-318-72). Acceptable standards for mortar

mix materials and design are:

a. Aggregate shall be in accordance with ASTM C 33 for fine
aggregate or ASTM C 330 for lightweight fine aggregate.
In general, aggregates must be of the highest quality
and free of deleterious substances. When tested in
accordance with ASTM C 40, the material should be
essentially free of organic impurities. Grading of
aggregate should be such that 100% passes a No. 8
sieve and should, in general, provide a mortar with
high density and good workability.

b. Cement shall conform to ASTM C 150.

c. Grading of aggregate and ratio of aggregate-to-cement
shall be carefully controlled to provide uniform properties
throughout the structure. Control of fineness modulus
shall conform to ASTM C 33 or C 330. Similarly, water-
to-cement ratio shall be carefully controlled. The
specified mix proportions should be maintained through
careful control of batching operations and unit weight of
mortar. Compression tests at 1-, 7-and 28-day curing
periods shall be taken to check uniformity.

d. Admixtures used shall conform to Federal Specification
SS-P-570b and ASTM Standards C 260, C 494 or C 618.
Entrapped air should be measured and kept to a minimum.
The use of additives not covered by the above specifica-
tions, such as polymer latex additives, shall be based
on test data to verify compliance with specified mortar
characteristics.

e. Workability of mortar, as established by grading, cement
content, water content and additives, shall be consistent
with obtaining the highest quality ferro-cement construction.
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f. Aggregate selection and mix design should minimize
drying shrinkage, which should be less than 0.03 percent
for laboratory control samples, as determined by
ASTM C 341.

2. Reinforcing Steel:

a. Wire mesh shall be welded wire mesh or woven wire mesh
conforming to ASTM A 185. Wire shall conform to
ASTM A 82.

b. Reinforcing bars shall be as specified by ASTM A 615 or
ASTM A 616 for Grade 60.

3. Surface Cracking: Extent of surface cracking and maximum crack

width allowed shall be as permitted for specific structural

application.

4. Ferro-cement Design Stresses: Design stresses should be based

on consideration of the material as an equivalent homogeneous

cross section. Design values are dependent on the type and

configuration of materials (mortar and reinforcing) used and

are defined by the current research results representing the

state-of-the-art in ferro-cement, which are discussed in

Chapter III of this report. Design stress for a specific

cross section should be as follows, where F.S. represents an

appropriate factor of safety:

a. No cracking allowed:

Design stress = First cracking stress

F.S.

b. Cracking permitted:

Ultimate stress
Design stress = Ultimate stress

F.S.

Design stress as related to allowable -crack
width is currently under study. See
Chapter III of this report.

The value of F.S. is based on the intended structural use and

type of loading, ferro-cement research results and the principles

A-3127
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of reinforced concrete design. For simplicity, a factor of

safety was used for determining design stress. It should be

noted, however, for reinforced concrete design the value of

design stress is based on statistical considerations and on

keeping within a maximum probability (generally extremely

small) of failure.

5. Structural Support: Supports and connections for ferro-cement

structures shall be capable of resisting all loads on the

structure. These shall conform to current design practice and

be verified by load tests.

C. Fabrication Standards

1. Dimensional Tolerance: Fabrication and erection procedures

shall ensure structural tolerances as required.

2. Surface Quality: Surface texture shall be as required in

finished structure. Design and fabrication methods shall

ensure adequate surface quality for a specified service life.

3. Durability and Corrosion Resistance: Ferro-cement design and

fabrication shall ensure durability of the material. Careful

consideration shall be given to mortar corrosion resistance

and permeability, reinforcement, and placing and curing methods.

Galvanized reinforcement shall be used whenever possible.

Adequacy of the design or the need for protective coatings

shall be established by appropriate tests for each structure.
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APPENDIX B

REVIEW OF FEASIBILITY OF USING FERRO-CEMENT

CONSTRUCTION FOR PROPOSED NASA WIND TUNNEL

DRIVE SECTION

The following report prepared by David J. Seymour of David J. Seymour,

Naval Architects and Marine Consultants, contains a feasibility review

and cost estimate for the proposed use of ferro-cement in wind tunnel

construction. This work is based on Mr. Seymour's experience with the

design and construction of a large ferro-cement cargo barge which is

discussed in the preceding text.

The wind tunnel structure on which the ferro-cement cost estimate in

this appendix is based is the Drive Section shown in Figures 22 and

23 of the preceding text. This structure contains 20 drive units

(4 high by 5 wide) and is 200 feet long. The ferro-cement portions

are the shrouds and nacelles which provide aerodynamic surfaces for

the flow of air past the drive unit fans. Total surface area of

these ferro-cement shrouds and nacelles is approximately 900,000 square

feet. The cost estimate developed by Mr. Seymour is given in terms of

both total cost for 900,000 square feet and unit cost on a square foot

basis. Using the unit cost, estimates can be made of the ferro-cement

costs for similar structures.
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David J. Seymour
NAVAL ARCHITECTS - MARINE CONSULTANTS

Word Trade Center - Suite 330 Board of Trade Tower - Suite 1012
Embarcadero at Market 1177 West Haitings Street
San Francisco, Ca 94111 Vancouver 1. B.C. Canada
Telephone (415) 398-8454 /398-8415 Telephone (604) 685-8394

April 13, 1972
File 212

John A. Blume & Associates, Engineers
Sheraton Palace Hotel
100 Jessie Street
San Francisco, California 94105

Attention: Mr. Roland L. Sharpe, Executive Vice President

SUBJECT: FEASIBILITY REVIEW OF FERRO-CEMENT FOR
PROPOSED NASA WIND TUNNEL

Encl. 1) DJS SK. 212 - Ferro-Cement De.sign for Wind
Tunnel

Gentlemen:

In accordance with your request, I have completed a general
feasibility review of the utilization of ferro-cement
panels for lining of the surface areas of shrouds and
nacelles in the drive section of subject wind tunnel.

The objectives of my review were primarily to:

a) Consider general design, fabrication and assembly
methods of ferro-cement for this application.

b) Estimate unit costs based on designs of item a)
above.

c) Determine the. engineering feasibility of employing
ferro-cement in relation to the current "state of
the art" for this material.

1. DESIGN, FABRICATION & ASSEMBLY METHODS

a) Data and design criteria used in this review:
(as given by Blume Engineers)
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SHROUDS - Dia. (max.) 48 ft., Dia. (min.) 40 ft.,
length 200 ft.

NACELLES - Dia. (max.) 20 ft., (min.) 2 ft.,,
length 200 ft.

No. of SHROUD/NACELLE UNITS - up to 20 (4 high -
5 across).

Height to top shroud above ground - about 210 ft.

Air Pressure Loading - Shrouds 100 PSF, Nacelles
0 PSF.

Surface Tolerances - Offsets from Fan

0 - 20 ft. = 0 in.

20 - 30 ft. = +3/32 in.

Over 40 ft. = + 1/2 in.

Steel Supporting Structure - in place for shrouds
with support points,at 20 ft. intervals.

b) General Design Considerations

The design criteria for present ferro-cement
construction, primarily in marine'application,
have been based on strengths to meet hydrostatic
loading (up to 700 PSF), stresses due to hogging
and sagging bending moments, water tightness,
impact damage, fire and corrosion resistance.
These are not present in the requirements for sub-
ject wind tunnel. However, two new design para-
meters have been added, namely fan induced vi-
bration loading and wind erosion. Little data is
available on these factors for ferro-cement and,
although not considered a major problem area, it
is recommended that some R&D effort be directed
to determine their effects.

Due to repetitive compound shapes involved, re-
quirements for accuracy in surface tolerances and,
inaccessiblilty for efficient "in place" fabri-
cation, the precast method is the obvious solution.
Precasting would permit accurate surface shape control
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(side against mold), precision forming of joint
edges and, fabrication under quality control
conditions.

Optimum panel size should be based on unit weight
and costs, to provide suitable panel strength for
self-supporting, ease of transportability to site,
and for efficient assembly operations.

The latter will most probably control panel size
and weight because of the height of shrouds above
ground and the interference of pre-installed
steel structure.

c) Review of Precast Method

Shroud panels should be easily fabricated by
employing a male mold representing the full length
of 1/2 of the diameter of a shroud. Panels should
be cast in 20 ft. lengths to match structure support
points and be 1/8 or 1/4 circle sections. Precast
ribs and stiffening member would be cast into
panel when latter is poured. See Sketch Encl. 1).

Nacelle panels should similarly lend themselves to
construction but on a female mold. Due to their
20 ft. diameter, it appears feasible that internal
framing of ferro-cement material could reduce
considerable amount of nacelle steel support
structure. Consideration might be given to eli-
minating all nacelle steel structure by introducing
a prestress (post-tension) system to accommodate
the spans between struts. See Sketch Encl. 1).

In employing the precasting method, only one mold
for shrouds and one for nacelles would be required.
.Accurate surface dimension control of the compound
curves would be insured being faced on the mold.
Finishing and application of coatings would be done

. prior to assembling panels in'place'.

d) Ferro-Cement Panel Design

Although a wide variety of lay-up materials, con-
figurations and cement mortar may be suitable for
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this application, the writer has selected a panel
design based on the most advanced developments in
marine design. Considerabl.e research data and
actual construction, including approval by marine
regulatory bodies, are incorporated in its design
so that .it.should be a sound basis for cost and
feasibility evaluation.

Principal Cheracteristics of Panel

Thickness - 5/8" overall

Lay-Up - 1 layer WWM' 1/4"

1 layer Rod 1/4"

2 layer WWM 1/4"

x 1/4" .x 21 ga.(S 80,000
psi)

dia. on 2" centers
(S 80,000 psi)

x 1/4" x ~1 ga. (Sy 80,000
psi)

Stiffner Spacing - 4 ft.

Cement Mortar - Lightweight Cement, Crushed and
Uncrushed Saturnlite Sand, Pozzolan
and Pozzolith and Special Additives.
Slump - 0

Vibrators - extensive use of vibrators on mold and
hand type to insure full penetration

Curing - accelerated at low temperature

See Sketch Encl. 1)

e) Assembly Methods

In the writer's opinion, the assembly method will
be a major factor affecting the feasibility of
using ferro-cement for this project.

The controlling factors for optimum panel size and
weight would be for ease of handling, positioning,
alignment and securing. Also unit cost per sq. ft.
and joint length would be reflected in optimizing.

The following method was selected for analysis:
(assume nacelle steel work to be installed after
shroud panels are in place)
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i) Transfer 20 ft. long precast and prefinished
shroud panels by hoisting to shroud level.

ii) Transfer panel into position within shroud
by special dolley, track and jig.

iii). Set panel in place and align with Laser.

iv) Epoxy, grind and finish joints - touch up
as required.

v) Install steel struts and nacelle steel framing.

vi) Install 20 ft. nacelle paneks, similar to steps
for shroud.

2. COST ESTIMATE

The following assumptions were included in preparing
cost estimate.

Total Ferro-Cement Panel Area - approx. 900,000 sq. ft.
(includes area of concrete drive unit support -
20 units)

Allowance for R&D, Design and Engineering.

Material and Labor for Molds.

Material and Labor for Manufacturing.

Material, Equipment and Labor for Assembly - hoists,
jigs, dollys, staging, etc.

Contingencies (margin, changes, escalation, etc.) of 15%.

SUMMARY

A. R&D, Design & Engrg.

B. Molds

C. Manufacturing

D. Assembly

E., Contingen'cies 15%

TOTAL

$ TOTAL

150,000

215,000

4,050,000

600,000
5,015,000

752,000

5,767,000

UNIT$/Sq.Ft.

0.17

0.24

4.50

0.67

0.483
6.41
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3. FEASIBILITY

In the writer's opinion, the concept of employing
ferro-cement material for- lining of the shroud and
nacelle surfaces is feasible from both a construction
and economic viewpoint.

The proposed application here of ferro-cement is well
within the current "state of the art" of the material.
This is further supported by the fact that it is ex-
posed to less severe environment and loads than those
found in marine practice.

Also rapid developnen.ts are presently unrder'wdy, by
commercial and governmental agencies, in the research
and application of this material to improve both its
strength and weight characteristics. These improve-
ments no doubt will be available to incorporate in this
project.

In addition, due to the large areas of ferro-cement
involved, efforts can be afforded in optimization of
design, fabrication and assembly methods to produce
improvements over the writer's assumptions used in
this evaluation.

fiery truly yours,

\ \(

DAVID J, SEYMOUR

DJS/rb
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SAN JOSE STATE COLLEGE
125 South Seventh Street, San lose, Caliiornia 95114

SCHOOL OF ENGINEERING (408) 277 - 2488
Department of Civil Engineering
and Applied Mechanics

Mr. Roland L. Sharpe

Executive Vice President

John'A. Blume & Associates, Engineers

100 Jessie Street

San Francisco, California 94105

Dear Mr. Sharpe:

Enclosed are three copies of the Laboratory

Report on Structural Investigation of Ferro-Cement

Specimens.

Please inform me if you wish to discuss

the report in more detail. It has been a pleasure

to be of service to your firm.

Very truly yours,

W. J. Ven ti, Ph. D.

Professor of Civil Engineering
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LABORATORY REPORT

on

STRUCTURAL INVESTIGATION OF

FERRO-CEMENT SPECIMENS

for

John A. Blume & Associates, Engineers

100 Jessie Street

San Francisco, California 94105

by

William J. Venuti, Ph. D.
Department of Civil Engineering

and

Applied Mechanics

School of Engineering
California State University, San Jose

San Jose, California 95114

June 1972
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STRUCTURAL INVESTIGATION OF

FERRO-CEMENT SPECIMENS

Introduction

John A. Blume & Associates of San Francisco,

California, has engaged in a preliminary study of the

static, dynamic, and fatigue characteristics of ferro-

cement as a structural material. The Department of Civil

Engineering and Applied Mechanics of the California State

University, San Jose, has collaborated with John A. Blume

& Associates in conducting the experimental phase of the study.

This report presents an account of the experimental

design and description of the laboratory equipment utilized

in conducting the experimental study. A description of the

ferro-cement mix design and reinforcement, laboratory data,

and analysis of the data is presented separately by John A.

Blume & Associates.

Laboratory Tests

The following tests were conducted on the ferro-

cement panels and specimens:
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1. Flexural static tests

2. Flexural fatigue tests

3. Flexural vibration tests

4. Beam shear tests

5. Cube compressive tests

6. Slab compressive' tests

7. Wire mesh strand tensile tests

8. Slab tensile tests

9. Air Flow tests

The following sections describe the specimens tested,

laboratory equipment, instrumentation and method of loading

of the various tests.

The entire laboratory study was conducted in the

Advanced Structures Laboratory of the California State Uni-

versity, San Jose.

All load indicator systems used in this experimental

program are calibrated and certified to be traceable to the

U.S. Bureau of Standards.

FLEXURAL STATIC TESTS

Specimen Preparation

Each flexural specimen was measured for thickness

with a 0.001 inch accuracy micrometer. The measurements were

taken at the corners of the zone of maximum bending moment.

-2-
14Z



At the bottom surface of the end of each flexural

panel, quick setting mortar (Hydrocal) was placed in the vi-

cinity of the support area. With the Hydbrcal in a plastic

state, the panel was slightly pressed against a rigid level

table to obtain smooth and parallel surfaces of the beam end

supports.

At the two loading points on the top surface of the

beam, additional transverse strips of Hydrocal were placed.

Prior to the setting of the Hydrocal, 1 inch wide by i inch

thick teflon pads were placed at the loading points. The

pads having a length equal to the width of the beam, were

pressed into the plastic Hydrocal with the channel loading

device. This procedure assured uniform bearing of the loading

device during testing.

Equipment and Instrumentation

The purpose of this series of tests was to determine

the load-deflection relationship, cracking load, and ultimate

load of each flexurao specimen.

A 12,000 lb. capacity mechanical type Tinius-Olsen

universal testing machine was used to apply the load. The

120 lb. loading range was used to obtain the load-deflection

curve for the initial phase of each test. The 600 lb. loading

range was used to carry the test to ultimate loading.

-3-
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The beam end supports were free to rotate to elim-

inate longitudinal restraint of the beam. The load was applied

at two points symetrically located about the beam centerline.

The load was applied by means of an aluminum channel which

was accurately placed over the teflon strips. A spherical

loading head attached to the upper platen of the testing machine

applied the load to the loading channel.

Deflections were measured at the beam centerline with

a Tinius-Olsen Model D-2 Deflectometer which incorporates a

linear voltage differential transformer (LVDT). The deflection

of the beam was magnified lOOX and recorded on the machine

12 inch wide continuous chart recorder. The load-deflection

curve was directly displayed on the recorder paper.

The loading rate for each test was set at 0.2 inch

per minute.

In order to determine the load of the formation of

the first flexural crack, silver conductive paint (with a

butyl acetate base) was applied to the bottom surface near

each outer edge along the length of the beam in the zone of

maximum flexure. An electrical circuit was completed with a

3 volt ohmeter. Upon the formation of the first flexural

crack, the circuit breaks and the load at first crack is

recorded.

-4-
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FLEXURAL FATIGUE TESTS

Specimen Preparation

The specimens that were subjected to repeated load-

ing in this series of tests were prepared in the same manner

as those specimens used for the flexural static tests.

Equipment and Instrumentation

The purpose of this series of tests was to determine

the number of cycles of repeated loading of specified magni-

tudes of load required to produce the formation of a flexural

crack.

The same support and loading arrangement as used in

the flexural static tests was used for these tests. However,

the entire loading apparatus was contained in the loading

frame of a 120,000 lb. Baldwin universal testing machine. The

machine was used only for the purpose of positioning the load-

ing head and specimens in a vertical direction.

The repeated loading was applied to the specimen by

means of a hydraulic closed loop servo system. A 3000 pound

capacity MTS hydraulic ram under load control was supported by

the upper head of the testing machine.

The ram was actuated with an MTS servo-controller

which received signals from a double bridge 500 pound capacity

-5-
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electrical strain gage load cell. Hydraulic power supply

was provided by a 10 gpm pumping unit. A micro-switch was

placed beneath the ferro-cement specimen for the purpose of

stopping the power supply in the event of panel failure during

the application of the repeated loading. An LVDT was also

placed beneath the center of the beam specimen to monitor

centerline displacement at various times.

A Model 126B VCF/Sweep MTS Function Generator was

used to supply the sinusoidal load input. The loading rate

was maintained at 12 Hz. for all tests.

The magnitude of load and displacement were displayed

on a Type 564 Textronix Storage dual beam oscilloscope with

a Type 3C66 Carrier Amplifier and a Type 2B67 Time Base. The

oscilloscope signals were channeled through a Model 297

Sanborn strip chart recorder.

To determine the number of cycles of repeated loading

at which the first flexural crack occurred, a relay system

was installed. The conductive paint circuit on the panel was

connected to a relay which was placed in the circuit of an

electric timer. The system was designed to break the circuit

of the electric timer upon the formation of a gap in the paint

circuit (caused by a flexural crack in the test panel). The

number of cycles at first crack was determined by obtaining

the product of the loading frequency and elapsed time.

-6-
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FLEXURAL VIBRATION TESTS

Specimen Preparation

The three specimens that were tested for the pur-

pose of obtaining the dynamic characteristics of the ferro-

cement panels were prepared with Hydrocal at the support points

and loading points similarly to those specimens used for the

flexural static tests.

Equipment and Instrumentation

The purpose of this series of tests was to determine

the fundamental flexural frequency of vibration and the damp-

ing coefficient for ferro-cement panels in a cracked and un-

cracked condition.

The same support and loading arrangement as previously

described was used for this part of the testing program.

The testing procedure was as follows. The test panel

was loaded downward statically to produce a positive moment

corresponding to a predetermined load. The force of the load-

ing ram was transmitted to the loading device on the test

panel by means of a 12 inch length of i inch diameter steel

rod. The steel rod was then abruptly pulled away from the

loading ram and loading device in order to excite the panel

to vibrate at its natural frequency. In some cases, fixed
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weights were placed on the loading device to prevent the panel

from vibrating away from the end supports. In one case, weights

were placed over the supports to assure that the beam main-

tained contact with the supports during vibration.

An LVDT placed beneath the centerline of the test

panel was used to obtain the displacement variation with time.

The displacement-time response was displayed on the oscillo-

scope with a persistent image of the beam. A photograph of

the oscilloscope screen was taken with a Polaroid Land Oscil-

loscope camera.

The horizontal time rate of the oscilloscope beam was

set at 0.2 sec. per cm. or 2 seconds for a full screen sweep

of 10 cm.

The vertical scale of the beam was set at rates of

.05 Volts, 0.1 Volts, 0.2 Volts, and 0.5 Volts/cm. The rela-

tionship between beam deflection and oscilloscope beam move-

ment was established prior to the vibration tests.

BEAM SHEAR TESTS

The supports and loading points were prepared with

Hydrocal as previously discussed. The load was applied in a

hydraulic universal testing machine at a rate of 0.05 in./min.
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CUBE COMPRESSIVE TESTS

The two-inch cubes of cement mortar were loaded in

a hydraulic universal testing machine at a rate of 2000 psi/min.

A spherical loading block was used to apply the load.

SLAB COMPRESSIVE TESTS

The loaded edges of the slab compression specimens

were prepared with Hydrocal to assure uniform loading. A

spherical loading block applied the load at a rate of 2000 psi/

min. in a hydraulic universal testing machine.

WIRE MESH STRAND TENSILE TEST

Each length of wire was tested in tension in a hy-

draulic type universal testing machine. Each end of the wire

was gripped in flat face wedge-type grips over a length of

3 inches. The free length of wire under tension was 12 inches.

The rate of loading was approximately 50 lb./minute.

SLAB TENSILE TESTS

Each tensile specimen was prepared by applying a

3S inch length of Hydrocal to each face at each end. The
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Hydrocal was placed in such a manner that the surfaces

were smooth and parallel to each other. Conductive paint

strips were vertically placed along each face near each ver-

tical edge to determine the tensile load at first crack.

The specimens were subjected to a tensile force in a

mechanical type universal testing machine. The flat face

wedge type grips were shimmed to eliminate bending of the spe-

cimen under loading. The tensile force was applied at a rate

of approximately 500 pounds per minute.

AIR FLOW TESTS

The purpose of these tests was to observe and

examine potential structural deterioration resulting from a

constant stream of air trained on the surface of a ferro-cement

panel at a pressure of 6 psi. for a period of 7 days.

In this study, two panel surfaces were subjected to

an air stream. One surface was the side of the panel that

was adjacent to the form during construction and the other sur-

face was one which was trowelled during the finishing operation.

An uncracked section of a 24 inch long beam was used

for each test. The panel was placed in an upright position

and fixed at an angle of 45 degrees to the air stream. A

2 in. by 2 in. square area of the panel surface was designated
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as the test zone and placed so its center coincided with the

center of the air stream.

The calibration of the apparatus was made as follows.

One end of a ½ inch diam. air hose was inserted into a hole

in a 3/4 in. thick wooden board and the opposite end of the

hose was connected to a pressure gage. The board was then

subjected to a steady jet of air which was issued from the

valve of an 80 psi air supply line. The wooden board was

positioned so that its surface was normal to the direction of

the air stream. The opening in the panel where the hose was

installed was centered on the air stream while pressure read-

ings were taken. Based on readings of several trials, a pres-

sure of 6 psi was obtained when the panel was placed at 3½

inches from the face of the valve.

Using this relationship as a basis, the ferro-cement

panels were also placed at a distance of 3½ inches to obtain

a pressure of 6 psi, The panels were rotated at 45 degrees

to the air stream with the center of the test zone remaining

at 3½ inches from the valve.

The two panels were tested concurrently at different

locations.
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APPENDIX D

REVISION OF DESIGN STUDY OF POWER SECTION

FOR PROPOSED V/STOL WIND TUNNEL
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APPENDIX D

REVISION OF DESIGN STUDY OF POWER SECTION FOR

PROPOSED V/STOL WIND TUNNEL

The cost estimate for ferro-cement shrouds and nacelles, which was

presented in Chapter VI and Appendix B of this report, was used to

revise the cost estimate for Concept III (Ferro-cement) for the Drive

(Power) Section that was the subject of the March 22, 1971, John A.

Blume & Associates, Engineers report "Conceptual Design Study of

Power Section for Proposed V/STOL Wind Tunnel."

A summary of revised cost figures for this Power Section is contained

in Table D-1. This summary contains cost figures for the entire struc-

ture including structural steel framing, painting, piles, and concrete,

including ferro-cement shells for shrouds and nacelles. The cost

figures in Table D-I reflect the following basic revisions to the

March 22, 1971, estimate:

1. Ferro-cement shrouds and nacelles are 5/8-inch shells with concrete

stiffening ribs.

2. Ferro-cement is used throughout for shrouds and nacelles; no

structural steel plate is used.

3. Slight increase in structural steel framing results from increased

weight of revised ferro-cement shell and concrete ribs.

The unit price of $6.41 per square foot for a 5/8-inch stiffened ferro-

cement shell is based on the cost estimate in Appendix B. It should

be noted that this unit price was developed for the revised Drive

Section shown in Figures 22 and 23 of this report, which is 200 feet

long with 20 drive units (4 high by 5 wide) containing approximately

JOHN A. BLUME & ASSOCIATES, ENGINEERS



TABLE D-I

REVISED COSTS FOR POWER SECTION STRUCTURE

( FERRO-CEMENT)

(Costs for Power Section 244 feet long containing 18 drive units,
described in the March 22, 1971, Blume report.)

Number of Cost for
Description Unit Unit Cost Units Total Units

Piles EA $ 250.00 6,200 $ 1,550,000

Concrete

Pile caps CY 85.00 13,200 1,222,000

Cast-in-place
superstructure CY - 135.00 33,580 4,530,000

Ferro-cement
shrouds SF 6.41* 773,000 4,955,000
nacelles (including

struts) SF 6.41* 468,000 3,000,000

Structural Steel

Shapes-Nacelles T 1,000.00 3,680 3,680,000

Shapes-Shrouds T 1,000.00 5,789 5,789,000

Shapes-Motor supports T 1,000.00 771 771,000

Painting

Shapes SF 0.15 1,430,000 21"5,000

TOTAL COST $26,712,000

*Ferro-cement unit costs are based on cost estimate in
Appendix B which is for a revised Power Section 200 feet
long with 20 drive units and approximately 900,000 square
feet of ferro-cement.

JOHN A. BLUME & ASSOCIATES, ENGINEERS
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900,000 square feet of ferro-cement. Al ughth Power Section dis-

cussed in the March 22, 1971, Blume report (and revised in Table D-l)

is 244 feet long with 18 drive units and 1,241,000 square feet of

;ferro-cement, the loading conditions and construction problems are the

-same. Therefore, the unit cost of $6.41 is applicable to both struc-

/,/tures.

The revised costs in Table D-1 show an increase for the ferro-cement

relative to the March 22, 1971, estimate. This increase reflects the

more in-depth feasibility and cost studies contained in the present

report and the revised construction recommendations. Based on con-

clusions reached in this report, the ferro-cement unit cost used in

Table D-1 is conservative since advances in ferro-cement material re-

search and design procedures and especially improvements in construc-

tion methods making greater use of automated fabrication techniques

should lead to reductions in the estimated costs. Any reduction in

fabrication cost will result in significant overall ferro-cement cost

reduction because fabrication comprises over two-thirds of the total

estimated ferro-cement costs.
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